Reducing qubit requirements for quantum simulation using molecular point group symmetries.

Simulating molecules is believed to be one of the early-stage applications for quantum computers. Current state-of-the-art quantum computers are limited in size and coherence, therefore optimizing resources to execute quantum algorithms is crucial. In this work, we develop a formalism to reduce the number of qubits required for simulating molecules using spatial symmetries, by finding qubit representations of irreducible symmetry sectors. We present our results for various molecules and elucidate a formal connection of this work with a previous technique that analyzed generic $Z_2$ Pauli symmetries.

[1]  Soichi Wakatsuki Acta Crystallographica , 1948, Nature.

[2]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[3]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[4]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[5]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[6]  W. Marsden I and J , 2012 .

[7]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[8]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[9]  Xiao Wang,et al.  Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. , 2017, Journal of chemical theory and computation.

[10]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[11]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[12]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[13]  Robert A. Lang,et al.  Exact and approximate symmetry projectors for the electronic structure problem on a quantum computer. , 2019, The Journal of chemical physics.

[14]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[15]  Dmitri Maslov,et al.  Ground-state energy estimation of the water molecule on a trapped ion quantum computer , 2019, ArXiv.

[16]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.