Probabilistic Prognosis of Fatigue Crack Growth Using Acoustic Emission Data

This paper presents a structural health monitoring methodology that uses acoustic emission (AE) features to predict crack growth in structural elements subjected to fatigue. This allows for the prediction of the failure of the structural element at the current load level. The methodology uses Bayesian inference to account for different sources of uncertainty such as uncertainty in the data (AE signal), unknown fracture mechanics parameters, and model inadequacy. The methodology is divided into two main components: a model updating component that uses available data to build a joint probability distribution of the different unknown fracture mechanics parameters, and a prognosis component in which this multivariable probability distribution is sampled to predict the stress intensity factor range at a future number of cycles. The application of the methodology does not require knowledge of the load amplitude nor the initial crack length. The methodology is validated using experimental data from a compact test specimen under cyclic loading.

[1]  Kyung Seop Han,et al.  Acoustic Emission Behavior during Fatigue Crack Propagation in 304 Stainless Steel , 2003 .

[2]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[3]  Sang-Hyeok Gang,et al.  Report Card for America's Infrastructure , 2012 .

[4]  Sankaran Mahadevan,et al.  Model uncertainty and Bayesian updating in reliability-based inspection , 2000 .

[5]  Boris A. Zárate,et al.  Reducing Epistemic Uncertainty Using a Model Updating Cognitive System , 2011 .

[6]  Victor Giurgiutiu,et al.  Quantification of fatigue cracking in CT specimens with passive and active piezoelectric sensing , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[7]  C. E. Richards,et al.  Acoustic emission monitoring of fatigue crack growth , 1978 .

[8]  Boris A. Zárate,et al.  Finite element model updating: Multiple alternatives , 2008 .

[9]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[10]  A. Berkovits,et al.  Fatigue Design Model Based on Damage Mechanisms Revealed by Acoustic Emission Measurements , 1995 .

[11]  Kevin L. Rens,et al.  Review of nondestructive evaluation techniques of civil infrastructure , 1999 .

[12]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[13]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[14]  T. M. Roberts,et al.  Fatigue life prediction based on crack propagation and acoustic emission count rates , 2003 .

[15]  Isaac M. Daniel,et al.  Acoustic Emission Monitoring of Fatigue Damage in Metals , 1998 .

[16]  Ne Dowling,et al.  Geometry effects and the J-integral approach to elastic-plastic fatigue crack growth , 1976 .

[17]  Mahmoud Reda Taha,et al.  Establishing concrete cracking strength interval using possibility theory with an application to predict the possible reinforced concrete deflection interval , 2010 .

[18]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[19]  C. Robert The Metropolis–Hastings Algorithm , 2015, 1504.01896.

[20]  Boris A. Zárate,et al.  Prediction of fatigue crack growth in steel bridge components using acoustic emission , 2011 .

[21]  N. Dowling,et al.  Fatigue Crack Growth During Gross Plasticity and the J-Integral , 1976 .

[22]  A. Chattopadhyay,et al.  Gaussian Process Time Series Model for Life Prognosis of Metallic Structures , 2009 .

[23]  T. J. Fowler,et al.  The MONPAC system , 1989 .

[24]  Jeremy E. Oakley,et al.  Probability is perfect, but we can't elicit it perfectly , 2004, Reliab. Eng. Syst. Saf..

[25]  Sankaran Mahadevan,et al.  Model Calibration for Fatigue Crack Growth Analysis under Uncertainty , 2011 .

[26]  R. Harrington,et al.  Acoustic emissions of fatigue crack growth , 1973 .

[27]  Kang Yong Lee Cyclic AE count rate and crack growth rate under low cycle fatigue fracture loading , 1989 .

[28]  H. K. D. H. Bhadeshia,et al.  Fatigue crack growth rate model for metallic alloys , 2010 .

[29]  Benjamin A. Graybeal,et al.  Highway Bridge Inspection: State-of-the-Practice Survey , 2001 .

[30]  Yi Lu,et al.  Damage detection using piezoelectric transducers and the Lamb wave approach: I. System analysis , 2008 .

[31]  William G. Byers,et al.  FATIGUE RELIABILITY REASSESSMENT PROCEDURES: STATE-OF-THE-ART PAPER , 1997 .

[32]  S. K. Sakurai,et al.  Assessment Of Rock Slope Stability By Fuzzy Set Theory , 1987 .

[33]  Zarate Hernandez,et al.  Alternative solutions and their probabilities for the model updating of structural systems , 2009 .

[34]  Andrew Makeev,et al.  Simultaneous uncertainty quantification of fracture mechanics based life prediction model parameters , 2007 .

[35]  H. L. Dunegan,et al.  Continuous monitoring of fatigue-crack growth by acoustic-emission techniques , 1974 .

[36]  Achintya Haldar,et al.  Bridge fatigue damage evaluation and updating using non-destructive inspections , 1996 .

[37]  Xxyyzz Fatigue Reliability: Introduction , 1982 .

[38]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[39]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .

[40]  Douglas Thain,et al.  Distributed computing in practice: the Condor experience , 2005, Concurr. Pract. Exp..

[41]  Carlos E. S. Cesnik,et al.  Review of guided-wave structural health monitoring , 2007 .

[42]  T. L. Anderson,et al.  Fatigue Crack Propagation , 2005 .