A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains

Background: The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms. Results: We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems. Conclusions: Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.

Henrik Westerberg | John M. Hancock | Steve D. M. Brown | Werner Müller | Michel Roux | Ann-Marie Mallon | Valérie Gailus-Durner | Wolfgang Wurst | Thomas M. Keane | Andrew Blake | Simon Greenaway | Hugh Morgan | Yann Herault | Sara Wells | Helmut Fuchs | George Nicholson | Petr Danecek | Jacqueline K. White | David J Adams | Jacqueline K White | Thomas M Keane | Kim Wong | Frauke Neff | Hamid Meziane | Heather Cater | Ramiro Ramirez-Solis | Lore Becker | Mohammed Selloum | Tania Sorg | Hilary Gates | Andreas Lengeling | Jochen Graw | Jacqueline Marvel | Sabine M Hölter | H. Fuchs | S. Greenaway | Y. Hérault | A. Mallon | R. Ramirez-Solis | T. Sorg | K. Steel | S. Wells | H. Westerberg | H. Meziane | B. Yalcin | P. Danecek | I. Jackson | G. Tocchini-Valentini | W. Wurst | D. Adams | A. Lengeling | T. Keane | Kim Wong | N. Ingham | M. Champy | H. Cater | G. Nicholson | M. Selloum | M. D. de Angelis | S. Hölter | E. Cartwright | Hugh Morgan | V. Gailus-Durner | J. Marvel | Werner Müller | F. Neff | T. Hough | J. Rozman | E. Golini | S. Mandillo | Anna-Karin B Gerdin | J. Estabel | De Angelis | A. Ayadi | A. Blake | A. di Fenza | R. Dacquin | O. Puk | J. Graw | Valerie E. Vancollie | Karen P Steel | Ian J Jackson | S. Djebali | Jan Rozman | John M Hancock | Oliver Puk | M. Simon | H. Gates | L. Becker | W. Hans | F. Preitner | P. Jurdic | Sarah Atkins | Abdel Ayadi | Elodie Bedu | Marie-France Champy | Roy Combe | Jeanne Estabel | Anna-Karin Gerdin | Wolfgang Hans | Tertius Hough | Luis Santos | Steve DM Brown | Binnaz Yalcin | Pierre Jurdic | Bastian Pasche | Laura-Anne Roberson | Mark Sanderson | Carl Shannon | Sophia Djebali | Tertius A. Hough | Frédéric Preitner | M. Roux | A. D. Fenza | Glauco P Tocchini-Valentini | Neil J Ingham | E. Bedu | Michelle M Simon | Elizabeth J Cartwright | Romain Dacquin | Silvia Mandillo | Debra Brooker | Elisabetta Golini | Anne Southwell | Valerie E Vancollie | Min Zi | Armida di Fenza | Martin Hrab | de Angelis | Sarah L Atkins | B. Pasche | M. Zi | Mark Sanderson | D. Brooker | R. Combe | Laura-Anne Roberson | Anne Southwell | M. Hrab | Carl Shannon | Luis A. Santos | Andrew Blake | Simon Greenaway | Steve D. M. Brown | Sophia Djebali | Hilary Gates | R. Ramírez‐Solís

[1]  B. Yalcin,et al.  The fine-scale architecture of structural variants in 17 mouse genomes , 2012, Genome Biology.

[2]  Steve D. M. Brown,et al.  High-throughput mouse phenotyping. , 2011, Methods.

[3]  Behavioral Neuroscience , 2022 .

[4]  K. Svenson,et al.  Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. , 2008, Genome research.

[5]  Lu Lu,et al.  The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis , 2001, Genome Biology.

[6]  John M. Hancock,et al.  EuroPhenome: a repository for high-throughput mouse phenotyping data , 2009, Nucleic Acids Res..

[7]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse , 2011, Nucleic Acids Res..

[8]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[9]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[10]  Peter A. Meric,et al.  Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse , 2009, PLoS biology.

[11]  Thomas M. Keane,et al.  Mouse genomic variation and its effect on phenotypes and gene regulation , 2011, Nature.

[12]  J. Bertin,et al.  Cutting Edge: NLRP12 Controls Dendritic and Myeloid Cell Migration To Affect Contact Hypersensitivity , 2010, The Journal of Immunology.

[13]  A. Yoshiki,et al.  Genetic differences among C57BL/6 substrains. , 2009, Experimental animals.

[14]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[15]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[16]  Martin S. Taylor,et al.  Genome-wide genetic association of complex traits in heterogeneous stock mice , 2006, Nature Genetics.

[17]  Hui Zhao,et al.  The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. , 2012, Investigative ophthalmology & visual science.

[18]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[19]  J. Miller,et al.  Predicting the Functional Effect of Amino Acid Substitutions and Indels , 2012, PloS one.

[20]  R. Douglas,et al.  Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. , 2004, Investigative ophthalmology & visual science.

[21]  Elissa J Chesler,et al.  Functional coding variation in recombinant inbred mouse lines reveals multiple serotonin transporter-associated phenotypes , 2009, Proceedings of the National Academy of Sciences.

[22]  Paul Stothard,et al.  In-depth annotation of SNPs arising from resequencing projects using NGS-SNP , 2011, Bioinform..

[23]  Valter Tucci,et al.  Gene-environment interactions differentially affect mouse strain behavioral parameters , 2006, Mammalian Genome.

[24]  Nengjun Yi,et al.  The Collaborative Cross, a community resource for the genetic analysis of complex traits , 2004, Nature Genetics.

[25]  Heinrich Magnus Manske,et al.  LookSeq: a browser-based viewer for deep sequencing data. , 2009, Genome research.

[26]  John F. Cryan,et al.  Brain–Gut–Microbe Communication in Health and Disease , 2011, Front. Physio..

[27]  Thomas M. Keane,et al.  Enhanced structural variant and breakpoint detection using SVMerge by integration of multiple detection methods and local assembly , 2010, Genome Biology.

[28]  Mark W. Moore,et al.  Towards an encyclopaedia of mammalian gene function: the International Mouse Phenotyping Consortium , 2012, Disease Models & Mechanisms.

[29]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[30]  J. Harrow,et al.  A conditional knockout resource for the genome-wide study of mouse gene function , 2011, Nature.

[31]  S. Marlin,et al.  Mutations in NALP12 cause hereditary periodic fever syndromes , 2008, Proceedings of the National Academy of Sciences.

[32]  Ulrich Tepass,et al.  CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. , 2003, Human molecular genetics.

[33]  John M. Hancock,et al.  EuroPhenome and EMPReSS: online mouse phenotyping resource , 2008 .

[34]  Andrew P Morris,et al.  Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice , 2004, Nature Genetics.

[35]  Michel Paques,et al.  Panretinal, high-resolution color photography of the mouse fundus. , 2007, Investigative ophthalmology & visual science.