Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform

Abstract Electrochemical sensors using edge-plane pyrolytic graphite electrode (EPPGEs) modified with single-wall carbon nanotubes–iron (III) oxide (SWCNT/Fe 2 O 3 ) nanoparticles for the sensitive detection of dopamine (DA) are described for the first time. The surface of the EPPGE-SWCNT–Fe 2 O 3 was characterized using field emission scanning electron microscopy, atomic force microscopy and energy dispersive X-ray spectroscopy while the electrochemical properties were investigated using the cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy techniques. When compared with the bare electrode or electrodes without the Fe 2 O 3 nanoparticles, the EPPGE-SWCNT–Fe 2 O 3 gave best response (7 times more than bare EPPGE and 2-fold more than the other two modified electrodes) towards the detection of DA. Also, the EPPGE-SWCNT–Fe 2 O 3 showed the best analytical performance for DA with an electron transfer rate constant of ∼0.26 cm s −1 , a sensitivity of 3.44 μA μM −1 , a limit of detection of 0.36 μM, a catalytic rate constant of 8.7 × 10 5  cm 3  mol −1  s −1 , and a diffusion coefficient of 3.5 × 10 −5  cm 2  s −1 . This electrode can be reliably used to assay DA in its real drug composition.

[1]  Shen-ming Chen,et al.  Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. , 2007, Talanta.

[2]  B. Ganjipour,et al.  Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode. , 2009, Bioelectrochemistry.

[3]  K. Ozoemena,et al.  Insights into the electro-oxidation of hydrazine at single-walled carbon-nanotube-modified edge-plane pyrolytic graphite electrodes electro-decorated with metal and metal oxide films , 2008 .

[4]  A. Salimi,et al.  Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles , 2006 .

[5]  T. Nyokong,et al.  Preferential electrosorption of cobalt (II) tetra-aminophthalocyanine at single-wall carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode , 2006 .

[6]  K. Nishimura,et al.  Electrocatalysis of transition-metal oxides for reduction and oxidation of nitrite ions , 1993 .

[7]  Shen-Ming Chen,et al.  Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid. , 2007, Analytica chimica acta.

[8]  D. Dong,et al.  Electrochemical response of dopamine at a penicillamine self-assembled gold electrode. , 2001, Bioelectrochemistry.

[9]  Relva C. Buchanan,et al.  SiC-C fiber electrode for biological sensing , 2007 .

[10]  S. Shahrokhian,et al.  Electrochemical oxidation of dopamine in the presence of sulfhydryl compounds: Application to the square-wave voltammetric detection of penicillamine and cysteine , 2006 .

[11]  Ping Zhang,et al.  Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold electrode. , 2005, Bioelectrochemistry.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Zhengwei Pan,et al.  Tensile tests of ropes of very long aligned multiwall carbon nanotubes , 1999 .

[14]  E. Lust,et al.  Adsorption kinetics of dodecyl sulfate anions on the bismuth (011) plane , 2003 .

[15]  Guangri Xu,et al.  Electropolymerization of negatively charged Ni(II) complex for the selective determination of dopamine in the presence of ascorbic acid. , 2008, Bioelectrochemistry.

[16]  M. Agazadeh,et al.  Electrocatalytic oxidation of dopamine at aluminum electrode modified with nickel pentacyanonitrosylferrate films, synthesized by electroless procedure , 2003 .

[17]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[18]  A. Gopalan,et al.  Enhanced Electrocatalysis for the Reduction of Hydrogen Peroxide at New Multiwall Carbon Nanotube Grafted Polydiphenylamine Modified Electrode , 2006 .

[19]  H. Razmi,et al.  Electrochemical characteristics of dopamine oxidation at palladium hexacyanoferrate film, electroless plated on aluminum electrode , 2005 .

[20]  Kalayil Manian Manesh,et al.  Electrocatalytic Dioxygen Reduction at Glassy Carbon Electrode Modified with Polyaniline Grafted Multiwall Carbon Nanotube Film , 2006 .

[21]  M. H. Pournaghi-Azar,et al.  Electrochemical characteristics of a cobalt pentacyanonitrosylferrate film on a modified glassy carbon electrode and its catalytic effect on the electrooxidation of hydrazine , 2003 .

[22]  Kenneth I. Ozoemena,et al.  Efficient electron transport across nickel powder modified basal plane pyrolytic graphite electrode : Sensitive detection of sulfhydryl degradation products of the V-type nerve agents , 2007 .

[23]  E. Wang,et al.  Studies of interaction between iron (III) and intermediates of synthetic neuromelanin by means of cyclic voltammetry of Fe (CN)3- 6 and dopamine , 2006 .

[24]  Z. Galus Fundamentals of electrochemical analysis , 1976 .

[25]  Yaping Ding,et al.  Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode , 2008 .

[26]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[27]  M. Aronniemi,et al.  XPS study on the correlation between chemical state and oxygen-sensing properties of an iron oxide thin film , 2007 .

[28]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[29]  Xinhua Lin,et al.  Electrochemical Characterization of Polymerized Cresol Red Film Modified Glassy Carbon Electrode and Separation of Electrocatalytic Responses for Ascorbic Acid and Dopamine Oxidation , 2005 .

[30]  R. Compton,et al.  Nickel(ii) tetra-aminophthalocyanine modified MWCNTs as potential nanocomposite materials for the development of supercapacitors , 2010 .

[31]  A. Moosavi-Movahedi,et al.  Electrocatalytic oxidation of some amino acids on a nickel-curcumin complex modified glassy carbon electrode , 2007 .

[32]  Qijin Wan,et al.  Catalytic capability of poly(malachite green) films based electrochemical sensor for oxidation of dopamine , 2007 .

[33]  Zhiwei Zhu,et al.  Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. , 2005, Talanta.

[34]  R. Ramaraj,et al.  Electrochemically deposited nanostructured platinum on Nafion coated electrode for sensor applications , 2005 .

[35]  R. Wightman,et al.  Detection of dopamine dynamics in the brain. , 1988, Analytical chemistry.

[36]  Shenhao Chen,et al.  General Equivalent Circuits for Faradaic Electrode Processes under Electrochemical Reaction Control , 1999 .

[37]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[38]  T. Ohsaka,et al.  Gold nanoparticle arrays for the voltammetric sensing of dopamine , 2003 .

[39]  B. Ogorevc,et al.  Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. , 2001, Analytical chemistry.

[40]  Louise K. Charkoudian,et al.  Fe(III)-coordination properties of neuromelanin components: 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid. , 2006, Inorganic chemistry.

[41]  H. Girault Analytical and Physical Electrochemistry , 2004 .

[42]  T. M. Nahir,et al.  Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed Edited by Evgenij Barsoukov (Texas Instruments Inc.) and J. Ross Macdonald (University of North Carolina, Chapel Hill). John Wiley & Sons, Inc.: Hoboken, NJ. 2005. xvii + 596 pp. $125.00. ISBN 0471-64749-7. , 2005 .

[43]  S. Shahrokhian,et al.  Cobalt salophen-modified carbon-paste electrode incorporating a cationic surfactant for simultaneous voltammetric detection of ascorbic acid and dopamine , 2007 .

[44]  M. G. Cook,et al.  X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper , 1975 .

[45]  Z. Gu,et al.  Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. , 2001, Analytical chemistry.

[46]  K. Ozoemena,et al.  Influence of solution pH on the electron transport of the self-assembled nanoarrays of single-walled carbon nanotube-cobalt tetra-aminophthalocyanine on gold electrodes: Electrocatalytic detection of epinephrine , 2008 .

[47]  Xinhua Lin,et al.  Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid , 2007 .

[48]  S. Jeon,et al.  Modified platinum electrode with phytic acid and single-walled carbon nanotube: Application to the selective determination of dopamine in the presence of ascorbic and uric acids , 2008 .

[49]  N. Lawrence,et al.  Anodic stripping voltammetry of sulphide at a nickel film: towards the development of a reagentless sensor. , 2003, Talanta.

[50]  Yuyuan Tian,et al.  In situ STM study of self-assembled mercaptopropionic acid monolayers for electrochemical detection of dopamine , 1999 .

[51]  Zhiyong Wang,et al.  Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine , 2007 .