State-of-the-art modeling of two-stage auto-ignition: Turbulence, evaporation and chemistry effects

[1]  H. Pitsch,et al.  Formulation and importance of conservative transport in non-premixed flamelet models , 2022, Proceedings of the Combustion Institute.

[2]  Ronghua Huang,et al.  Effects of Turbulence Intensity and N-Pentanol Concentration on Droplet Evaporation and Auto-Ignition , 2022, SSRN Electronic Journal.

[3]  A. Giusti,et al.  Numerical investigation of multi-component droplet evaporation and autoignition for aero-engine applications , 2022, Combustion and Flame.

[4]  John L. Zhou,et al.  Rapid detection of high-emitting vehicles by on-road remote sensing technology improves urban air quality , 2022, Science advances.

[5]  Y. C. Liu,et al.  External group combustion of droplet clouds under two-stage autoignition conditions , 2021 .

[6]  S. Chung,et al.  A DNS study of ignition characteristics of a lean PRF/air mixture with CH2O and H2O2 addition under HCCI combustion-relevant conditions , 2021 .

[7]  C. Pera,et al.  Development of an extended reactor configuration to analyze preferential segregation impact on spray autoignition , 2021 .

[8]  O. Stein,et al.  Grid dependence of evaporation rates in Euler–Lagrange simulations of dilute sprays , 2021 .

[9]  M. Jia,et al.  Spray–turbulence–chemistry interactions under engine-like conditions , 2021 .

[10]  Y. C. Liu,et al.  A cell model analysis for droplets inside non-dilute n-heptane droplet clouds near autoignition limit , 2021 .

[11]  A. Thawko,et al.  Performance and pollutant emission of the reforming-controlled compression ignition engine – Experimental study , 2021 .

[12]  Sthavishtha R. Bhopalam,et al.  On droplets that cluster and evaporate in reactive turbulence , 2021 .

[13]  Jianren Fan,et al.  Turbulence, evaporation and combustion interactions in n-heptane droplets under high pressure conditions using DNS , 2021 .

[14]  Jinhua Wang,et al.  Direct numerical simulation of DME auto-ignition with temperature and composition stratification under HCCI engine conditions , 2021 .

[15]  Guojun Zhang,et al.  Experimental study on puffing, auto-ignition and combustion characteristics of an n-pentanol-diesel droplet , 2021, Energy.

[16]  C. Tao,et al.  Direct numerical simulation of low temperature reactions affecting n-dodecane spray autoignition , 2020 .

[17]  D. Dietrich,et al.  Autoignition Dynamics of N-dodecane Droplets under Normal Gravity , 2020, Combustion Science and Technology.

[18]  S. Karimkashi,et al.  A numerical study on combustion mode characterization for locally stratified dual-fuel mixtures , 2020, Combustion and Flame.

[19]  Hua Zhou,et al.  The correlation of species concentration with heat release rate in an auto-igniting turbulent n-heptane spray flame , 2020 .

[20]  Y. Ju,et al.  Dynamics of cool flames , 2019, Progress in Energy and Combustion Science.

[21]  Evatt R. Hawkes,et al.  Regimes of premixed turbulent spontaneous ignition and deflagration under gas-turbine reheat combustion conditions , 2019, Combustion and Flame.

[22]  Taotao Zhou,et al.  Numerical simulation of the effects of evaporation on the n-heptane/air auto-ignition process under different initial air temperatures , 2019, Fuel.

[23]  Xi Chen,et al.  Experimental study on auto-ignition characteristics of a butanol-hexadecane droplet under elevated pressures and temperatures , 2019, Energy.

[24]  P. Glarborg,et al.  Effects of ambient pressure on ignition and flame characteristics in diesel spray combustion , 2019 .

[25]  H. Im,et al.  Prediction of Ignition Regimes in DME/Air Mixtures with Temperature and Concentration Fluctuations , 2019, AIAA Scitech 2019 Forum.

[26]  E. Hawkes,et al.  Low-temperature chemistry in n-heptane/air premixed turbulent flames , 2018, Combustion and Flame.

[27]  V. Hosseini,et al.  The effect of diethyl ether addition on performance and emission of a reactivity controlled compression ignition engine fueled with ethanol and diesel , 2018, Energy Conversion and Management.

[28]  Jacqueline H. Chen,et al.  Direct numerical simulation of a temporally evolving air/n-dodecane jet at low-temperature diesel-relevant conditions , 2018, Combustion and Flame.

[29]  P. Jenny,et al.  Evaporating droplets in turbulence studied with statistically stationary homogeneous direct numerical simulation , 2018, Physics of Fluids.

[30]  E. Mastorakos,et al.  Numerical investigation of kerosene single droplet ignition at high-altitude relight conditions , 2018, Fuel.

[31]  M. Birouk,et al.  Fuel vaporization: Effect of droplet size and turbulence at elevated temperature and pressure , 2018 .

[32]  B. Wang,et al.  Fully resolved DNS of droplet array combustion in turbulent convective flows and modelling for mixing fields in inter-droplet space , 2018 .

[33]  Zhi Wang,et al.  A chemical kinetic mechanism for the low- and intermediate-temperature combustion of Polyoxymethylene Dimethyl Ether 3 (PODE3) , 2018 .

[34]  Omid Jahanian,et al.  A simple algebraic model for predicting HCCI auto-ignition timing according to control oriented models requirements , 2017 .

[35]  E. Mastorakos,et al.  Simulations of droplet combustion under gas turbine conditions , 2017 .

[36]  R. Sankaran,et al.  On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions , 2017 .

[37]  Jacqueline H. Chen,et al.  Two-stage autoignition and edge flames in a high pressure turbulent jet , 2017, Journal of Fluid Mechanics.

[38]  Y. Ju On the propagation limits and speeds of premixed cool flames at elevated pressures , 2017 .

[39]  Jacqueline H. Chen,et al.  Characterisation of two-stage ignition in diesel engine-relevant thermochemical conditions using direct numerical simulation , 2016 .

[40]  C. Avedisian,et al.  Comprehensive study of initial diameter effects and other observations on convection-free droplet combustion in the standard atmosphere for n-heptane, n-octane, and n-decane☆ , 2016 .

[41]  José M. Desantes,et al.  A new method to predict high and low-temperature ignition delays under transient thermodynamic conditions and its experimental validation using a Rapid Compression-Expansion Machine , 2016 .

[42]  M. Yao,et al.  Direct numerical simulation of n-heptane/air auto-ignition with thermal and charge stratifications under partially-premixed charge compression ignition (PCCI) engine related conditions , 2016 .

[43]  Gábor Janiga,et al.  Towards direct numerical simulations of low-Mach number turbulent reacting and two-phase flows using immersed boundaries , 2016 .

[44]  S. Pope,et al.  An analysis of the structure of an n-dodecane spray flame using TPDF modelling , 2016 .

[45]  Konstantinos Boulouchos,et al.  Study of ignition delay time and generalization of auto-ignition for PRFs in a RCEM by means of natural chemiluminescence , 2016 .

[46]  W. Paa,et al.  Ignition delay times of single kerosene droplets based on formaldehyde LIF detection , 2016 .

[47]  T. Lu,et al.  Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion , 2015 .

[48]  Ankit Bhagatwala,et al.  Numerical investigation of spontaneous flame propagation under RCCI conditions , 2015 .

[49]  C. Law,et al.  Autoignition-affected stabilization of laminar nonpremixed DME/air coflow flames , 2015 .

[50]  E. Mastorakos,et al.  Spontaneous ignition of isolated n-heptane droplets at low, intermediate, and high ambient temperatures from a mixture-fraction perspective , 2015 .

[51]  X. Bai,et al.  Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel , 2014 .

[52]  S. Aggarwal Single droplet ignition: Theoretical analyses and experimental findings , 2014 .

[53]  S. Chakravarthy,et al.  Flame speed and tangential strain measurements in widely stratified partially premixed flames interacting with grid turbulence , 2014 .

[54]  D. Dietrich,et al.  Droplet Combustion Experiments Aboard the International Space Station , 2014 .

[55]  Jianren Fan,et al.  Effects of turbulent intensity and droplet diameter on spray combustion using direct numerical simulation , 2014 .

[56]  R. Kurose,et al.  Effects of ambient pressure, gas temperature and combustion reaction on droplet evaporation , 2014 .

[57]  F. Dryer,et al.  Isolated n-heptane droplet combustion in microgravity: “Cool Flames” – Two-stage combustion , 2014 .

[58]  Chung King Law,et al.  The role of global and detailed kinetics in the first-stage ignition delay in NTC-affected phenomena , 2013 .

[59]  C. Eigenbrod,et al.  Formaldehyde LIF detection with background subtraction around single igniting GTL diesel droplets , 2013 .

[60]  Giulio Borghesi,et al.  Complex chemistry DNS of n-heptane spray autoignition at high pressure and intermediate temperature conditions , 2013 .

[61]  J. Abraham,et al.  Influence of turbulence on autoignition in stratified mixtures under compression ignition engine conditions , 2013 .

[62]  Yuanjiang Pei,et al.  A Comprehensive Study of Effects of Mixing and Chemical Kinetic Models on Predictions of n-heptane Jet Ignitions with the PDF Method , 2013 .

[63]  M. Musculus,et al.  Conceptual models for partially premixed low-temperature diesel combustion , 2013 .

[64]  Patrick Jenny,et al.  Modeling of turbulent dilute spray combustion , 2012 .

[65]  J. Abraham,et al.  Influence of heat release and turbulence on scalar dissipation rate in autoigniting n-heptane/air mixtures , 2012 .

[66]  J. Abraham,et al.  Evaluation of an unsteady flamelet progress variable model for autoignition and flame development in compositionally stratified mixtures , 2012 .

[67]  C. Pera,et al.  Numerical analysis of the influence of two-phase flow mass and heat transfer on n-heptane autoignition , 2012 .

[68]  S. M. Sarathy,et al.  A comprehensive chemical kinetic combustion model for the four butanol isomers , 2012 .

[69]  Chung King Law,et al.  NTC-affected ignition in nonpremixed counterflow , 2012 .

[70]  C. Avedisian,et al.  A comparison of the spherical flame characteristics of sub-millimeter droplets of binary mixtures of n-heptane/iso-octane and n-heptane/toluene with a commercial unleaded gasoline , 2012 .

[71]  Tianfeng Lu,et al.  Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study , 2011 .

[72]  J. Zádor,et al.  Kinetics of elementary reactions in low-temperature autoignition chemistry , 2011 .

[73]  E. Mastorakos Ignition of turbulent non-premixed flames , 2009 .

[74]  Evatt R. Hawkes,et al.  Probability density function treatment of turbulence/chemistry interactions during the ignition of a temperature-stratified mixture for application to HCCI engine modeling , 2008 .

[75]  F. Battin‐Leclerc Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates , 2008 .

[76]  Scott Klasky,et al.  Terascale direct numerical simulations of turbulent combustion using S3D , 2008 .

[77]  Heinz Pitsch,et al.  High order conservative finite difference scheme for variable density low Mach number turbulent flows , 2007, J. Comput. Phys..

[78]  S. Baek,et al.  ON THE AUTOIGNITION AND COMBUSTION CHARACTERISTICS OF KEROSENE DROPLETS AT ELEVATED PRESSURE AND TEMPERATURE , 2007 .

[79]  T. Echekki,et al.  Autoignition in nonhomogeneous mixtures: Conditional statistics and implications for modeling , 2007 .

[80]  U. Maas,et al.  The auto-ignition of single n-heptane/iso-octane droplets , 2007 .

[81]  J. Hewson,et al.  Nonpremixed n-heptane autoignition in unsteady counterflow , 2006 .

[82]  U. Maas,et al.  Detailed numerical simulations of the autoignition of single n-heptane droplets in air , 2006 .

[83]  H. Im,et al.  Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: I. Fundamental analysis and diagnostics , 2006 .

[84]  S. Sreedhara,et al.  Assessment of closure schemes in second-order conditional moment closure against DNS with extinction and ignition , 2005 .

[85]  M. Mehl,et al.  Autoignition and burning rates of fuel droplets under microgravity , 2005 .

[86]  Seung Wook Baek,et al.  EXPERIMENTAL STUDY ON EVAPORATION OF KEROSENE DROPLETS AT ELEVATED PRESSURES AND TEMPERATURES , 2004 .

[87]  Heinz Pitsch,et al.  Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow , 2004 .

[88]  Shwin-Chung Wong,et al.  On the suppression of negative temperature coefficient (NTC) in autoignition of n-heptane droplets , 2003 .

[89]  S. Elghobashi,et al.  On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence , 2003 .

[90]  C. Sung,et al.  Structure, aerodynamics, and geometry of premixed flamelets , 2000 .

[91]  Luc Vervisch,et al.  Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model , 2000 .

[92]  A. Klimenko,et al.  Conditional moment closure for turbulent combustion , 1999 .

[93]  A. Marchese,et al.  Numerical modeling of isolated n-alkane droplet flames: initial comparisons with ground and space-based microgravity experiments , 1999 .

[94]  C. Westbrook,et al.  A Comprehensive Modeling Study of n-Heptane Oxidation , 1998 .

[95]  T. Poinsot,et al.  Numerical simulations of autoignition in turbulent mixing flows , 1997 .

[96]  William J. Pitz,et al.  A WIDE RANGE MODELING STUDY OF DIMETHYL ETHER OXIDATION , 1997 .

[97]  William A. Sirignano,et al.  Droplet vaporization model for spray combustion calculations , 1988 .

[98]  D. Dietrich,et al.  Three stage cool flame droplet burning behavior of n-alkane droplets at elevated pressure conditions: Hot, warm and cool flame , 2019, Proceedings of the Combustion Institute.

[99]  M. Ihme,et al.  Coupling of turbulence on the ignition of multicomponent sprays , 2019, Proceedings of the Combustion Institute.

[100]  Jacqueline H. Chen,et al.  A parametric study of ignition dynamics at ECN Spray A thermochemical conditions using 2D DNS , 2019, Proceedings of the Combustion Institute.

[101]  Jacqueline H. Chen,et al.  Identification of premixed flame propagation modes using chemical explosive mode analysis , 2019, Proceedings of the Combustion Institute.

[102]  D. Thévenin,et al.  Direct numerical simulation of spray evaporation and autoignition in a temporally-evolving jet , 2017 .

[103]  Scott A. Skeen,et al.  Understanding the ignition mechanism of high-pressure spray flames , 2017 .

[104]  Jacqueline H. Chen,et al.  A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions , 2017 .

[105]  H. Nomura,et al.  Microgravity experiments of fuel droplet evaporation in sub- and supercritical environments , 2017 .

[106]  S. Chung,et al.  Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: A comparative DNS study , 2017 .

[107]  J. Chen,et al.  Effect of droplet diameter and global equivalence ratio on n-heptane spray auto-ignition , 2017 .

[108]  B. Wang,et al.  Assessment of scaling laws for mixing fields in inter-droplet space , 2017 .

[109]  Xiucheng Zhu,et al.  Ignition and formaldehyde formation in dimethyl ether (DME) reacting spray under various EGR levels , 2017 .

[110]  M. Ihme,et al.  The role of preferential evaporation on the ignition of multicomponent fuels in a homogeneous spray/air mixture , 2017 .

[111]  M. Hicks,et al.  Multistage oscillatory “Cool Flame” behavior for isolated alkane droplet combustion in elevated pressure microgravity condition , 2015 .

[112]  E. Hawkes,et al.  Ignition in compositionally and thermally stratified n-heptane/air mixtures: A direct numerical simulation study , 2015 .

[113]  Julien Manin,et al.  Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames , 2015 .

[114]  Tiziano Faravelli,et al.  Numerical modeling of auto-ignition of isolated fuel droplets in microgravity , 2015 .

[115]  Jacqueline H. Chen,et al.  Polybrachial structures in dimethyl ether edge-flames at negative temperature coefficient conditions , 2015 .

[116]  H. Curran,et al.  A comparison of longer alkane and alcohol ignition including new experimental results for n-pentanol and n-hexanol , 2013 .

[117]  X. Bai,et al.  Effects of EGR on the structure and emissions of diesel combustion , 2013 .

[118]  O. Moriue,et al.  Effects of droplet interaction on spontaneous ignition of an n-decane droplet pair , 2013 .

[119]  C. Law,et al.  Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow , 2012 .

[120]  A. Marchese,et al.  Ignition delay of fatty acid methyl ester fuel droplets: Microgravity experiments and detailed numerical modeling , 2011 .

[121]  Andrew P. Wandel,et al.  Direct numerical simulations of autoignition in turbulent two-phase flows , 2009 .

[122]  Hong G. Im,et al.  The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen–air mixture , 2005 .

[123]  C. Rutland,et al.  Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow , 2005 .

[124]  Christian Eigenbrod,et al.  Numerical simulations of the ignition of n-heptane droplets in the transition diameter range from heterogeneous to homogeneous ignition , 2004 .

[125]  Wolfgang Triebel,et al.  Single-shot imaging of gas temperatures in low-temperature combustion based on laser-induced fluorescence of formaldehyde , 2002 .

[126]  C. Eigenbrod,et al.  Detailed numerical simulations for the multi-stage self-ignition process of n-decane single droplets with complex chemistry , 2001 .

[127]  Osamu Moriue,et al.  DETAILED NUMERICAL SIMULATIONS OF THE MULTISTAGE SELF- IGNITION PROCESS OF n-HEPTANE ISOLATED DROPLETS AND THEIR VERIFICATION BY COMPARISON WITH MICROGRAVITY EXPERIMENTS , 2000 .

[128]  Christian Eigenbrod,et al.  Effects of dilution by aromatic hydrocarbons on staged ignition behavior of n-decane droplets , 2000 .

[129]  Christian Eigenbrod,et al.  Spontaneous ignition of liquid droplets from a view of non-homogeneous mixture formation and transient chemical reactions , 1996 .

[130]  M. Kono,et al.  Two Stage Ignition of n-Heptane Isolated Droplets , 1995 .