Adaptive kernel principal component analysis for nonlinear dynamic process monitoring

In this paper a new algorithms for adaptive kernel principal component analysis (AKPCA) is proposed for dynamic process monitoring. The proposed AKPCA algorithm combine two existing algorithm, the recursive weighted PCA (RWPCA) and the moving window kernel PCA algorithms. For fault detection and isolation, a set of structured residuals is generated by using a partial AKPCA models. Each partial AKPCA model is performed on subsets of variables. The structured residuals are utilized in composing an isolation scheme, according to a properly designed incidence matrix. The results for applying this algorithm on the nonlinear time varying processes of the Tennessee Eastman shows its feasibility and advantageous performances.

[1]  In-Beum Lee,et al.  Adaptive multivariate statistical process control for monitoring time-varying processes , 2006 .

[2]  Claus Weihs,et al.  Variable window adaptive Kernel Principal Component Analysis for nonlinear nonstationary process monitoring , 2011, Comput. Ind. Eng..

[3]  Jyh-Cheng Jeng,et al.  Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms , 2010 .

[4]  Xiao Bin He,et al.  Variable MWPCA for Adaptive Process Monitoring , 2008 .

[5]  Wang,et al.  Sensor fault detection and identification using Kernel PCA and its fast data reconstruction , 2010, CCDC 2010.

[6]  Fuli Wang,et al.  On-line batch process monitoring using batch dynamic kernel principal component analysis , 2010 .

[7]  Chouaib Chakour,et al.  New Adaptive Moving Window PCA for Process Monitoring , 2012 .

[8]  Barry M. Wise,et al.  Development and Benchmarking of Multivariate Statistical Process Control Tools for a Semiconductor Etch Process: Improving Robustness through Model Updating , 1997 .

[9]  G. Rong,et al.  Learning a data-dependent kernel function for KPCA-based nonlinear process monitoring , 2009 .

[10]  Tian Xuemin,et al.  A fault detection method using multi-scale kernel principal component analysis , 2008, 2008 27th Chinese Control Conference.

[11]  Janos Gertler,et al.  Sensor and actuator fault isolation by structured partial PCA with nonlinear extensions , 2000 .

[12]  ChangKyoo Yoo,et al.  Dynamic Monitoring Method for Multiscale Fault Detection and Diagnosis in MSPC , 2002 .

[13]  Yuhong Zhao,et al.  A Flexible Principle Component Analysis Method for Process Monitoring , 2008, 2008 Fourth International Conference on Natural Computation.

[14]  Ning Wang,et al.  The optimization of the kind and parameters of kernel function in KPCA for process monitoring , 2012, Comput. Chem. Eng..

[15]  Haesun Park,et al.  Nonlinear Discriminant Analysis Using Kernel Functions and the Generalized Singular Value Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[16]  G. Irwin,et al.  Process monitoring approach using fast moving window PCA , 2005 .

[17]  U. Kruger,et al.  Moving window kernel PCA for adaptive monitoring of nonlinear processes , 2009 .

[18]  C. Yoo,et al.  Nonlinear process monitoring using kernel principal component analysis , 2004 .

[19]  Zhiqiang Ge,et al.  Improved kernel PCA-based monitoring approach for nonlinear processes , 2009 .

[20]  S. Wold Exponentially weighted moving principal components analysis and projections to latent structures , 1994 .

[21]  José Ragot,et al.  Variable Reconstruction Using RBF-NLPCA for Process Monitoring , 2003 .

[22]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[23]  A. J. Morris,et al.  Application of exponentially weighted principal component analysis for the monitoring of a polymer film manufacturing process , 2003 .

[24]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[25]  J. Golinval,et al.  Fault detection based on Kernel Principal Component Analysis , 2010 .

[26]  Weihua Li,et al.  Recursive PCA for adaptive process monitoring , 1999 .

[27]  In-Beum Lee,et al.  Fault identification for process monitoring using kernel principal component analysis , 2005 .

[28]  Wang Rui,et al.  Sensor fault detection and identification using Kernel PCA and its fast data reconstruction , 2010, 2010 Chinese Control and Decision Conference.