A Climatology of Disdrometer Measurements of Rainfall in Finland over Five Years with Implications for Global Radar Observations

AbstractTo improve the understanding of high-latitude rain microphysics and its implications for the remote sensing of rainfall by ground-based and spaceborne radars, raindrop size measurements have been analyzed that were collected over five years with a Joss–Waldvogel disdrometer located in Jarvenpaa, Finland. The analysis shows that the regional climate is characterized by light rain and small drop size with narrow size distributions and that the mutual relations of drop size distribution parameters differ from those reported at lower latitudes. Radar parameters computed from the distributions demonstrate that the high latitudes are a challenging target for weather radar observations, particularly those employing polarimetric and dual-frequency techniques. Nevertheless, the findings imply that polarimetric ground radars can produce reliable “ground truth” estimates for space observations and identify dual-frequency radars utilizing a W-band channel as promising tools for observing rainfall in the high-...

[1]  P. Joe,et al.  Comparison of Raindrop Size Distribution Measurements by a Joss-Waldvogel Disdrometer, a PMS 2DG Spectrometer, and a POSS Doppler Radar , 1994 .

[2]  J. S. Marshall,et al.  MEASUREMENT OF RAINFALL BY RADAR , 1947 .

[3]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar: Principles and Applications , 2001 .

[4]  A. Waldvogel,et al.  Raindrop Size Distribution and Sampling Size Errors , 1969 .

[5]  Guifu Zhang,et al.  Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment , 2002 .

[6]  P. T. Willis,et al.  Functional fits to some observed drop size distributions and parameterization of rain , 1984 .

[7]  Sergey Y. Matrosov,et al.  Dual‐frequency radar ratio of nonspherical atmospheric hydrometeors , 2005 .

[8]  R. C. Srivastava,et al.  Doppler Radar Observations of Drop-Size Distributions in a Thunderstorm , 1971 .

[9]  V. N. Bringi,et al.  Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation , 1976 .

[10]  Eugenio Gorgucci,et al.  Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis , 2003 .

[11]  Guifu Zhang,et al.  Drop Size Distribution Retrieval with Polarimetric Radar: Model and Application , 2004 .

[12]  A. Tokay,et al.  Error Characteristics of Rainfall Measurements by Collocated Joss–Waldvogel Disdrometers , 2005 .

[13]  Hiroshi Kumagai,et al.  A Study of Rain Estimation Methods from Space Using Dual-Wavelength Radar Measurements at Near-Nadir Incidence over Ocean , 1992 .

[14]  Simone Tanelli,et al.  CloudSat mission: Performance and early science after the first year of operation , 2008 .

[15]  D. S. Zrnic,et al.  Differential propagation phase shift and rainfall rate estimation , 1986 .

[16]  V. Bringi,et al.  Drop Shapes, Model Comparisons, and Calculations of Polarimetric Radar Parameters in Rain , 2007 .

[17]  Eugenio Gorgucci,et al.  A Methodology for Estimating the Parameters of a Gamma Raindrop Size Distribution Model from Polarimetric Radar Data: Application to a Squall-Line Event from the TRMM/Brazil Campaign , 2002 .

[18]  Eugenio Gorgucci,et al.  POTENTIAL ROLE OF DUAL- POLARIZATION RADAR IN THE VALIDATION OF SATELLITE PRECIPITATION MEASUREMENTS Rationale and Opportunities , 2008 .

[19]  The Distribution of Rain , 1930, Science.

[20]  Eugenio Gorgucci,et al.  Estimation of Raindrop Size Distribution Parameters from Polarimetric Radar Measurements , 2002 .

[21]  P. Ray,et al.  Broadband complex refractive indices of ice and water. , 1972, Applied optics.

[22]  David B. Wolff,et al.  Rain gauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP) , 2003 .

[23]  Anthony J. Illingworth,et al.  The Need to Represent Raindrop Size Spectra as Normalized Gamma Distributions for the Interpretation of Polarization Radar Observations , 2002 .

[24]  V. Chandrasekar,et al.  Examination of the μ–Λ Relation Suggested for Drop Size Distribution Parameters , 2007 .

[25]  Donna V. Kliche,et al.  The Bias in Moment Estimators for Parameters of Drop Size Distribution Functions: Sampling from Exponential Distributions , 2005 .

[26]  Christian D. Kummerow,et al.  Global Precipitation Measurement , 2008 .

[27]  M. Mishchenko,et al.  Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. , 2000, Applied optics.

[28]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[29]  J. Joss,et al.  Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung , 1967 .

[30]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[31]  Robert A. Black,et al.  The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing , 2001 .

[32]  V. N. Bringi,et al.  Measurements and inferences of raindrop canting angles , 2008 .

[33]  Riko Oki,et al.  Development of spaceborne dual frequency precipitation radar for the global precipitation measurement mission , 2006, SPIE Remote Sensing.

[34]  Michael Schönhuber,et al.  Raindrop Size Distribution Parameters of Distrometer Data With Different Bin Sizes , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[35]  V. Chandrasekar,et al.  Simulation of Radar Reflectivity and Surface Measurements of Rainfall , 1987 .

[36]  B. Kedem,et al.  On the lognormality of rain rate. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Nobuhiro Takahashi,et al.  A dual-frequency rain profiling method without the use of a surface reference technique , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Alexander V. Ryzhkov,et al.  Rainfall Estimation with a Polarimetric Prototype of WSR-88D , 2005 .

[39]  Robert Meneghini,et al.  On the Equivalence of Dual-Wavelength and Dual-Polarization Equations for Estimation of the Raindrop Size Distribution , 2007 .

[40]  E. Barthazy,et al.  An Optical Array Instrument for Shape and Fall Velocity Measurements of Hydrometeors , 2004 .

[41]  Edwin Campos,et al.  Instrumental Uncertainties in Z–R Relations , 2000 .

[42]  V. N. Bringi,et al.  Differential reflectivity and differential phase shift: Applications in radar meteorology , 1978 .

[43]  E. Im,et al.  Mathematical–Physical Framework for Retrieval of Rain DSD Properties from Dual-Frequency Ku–Ka-Band Satellite Radar , 2004 .