Symmetry of Tangent Stiffness Matrices of 3D Elastic Frame

In the literature, the symmetry of the element tangent stiffness matrix of a spatial elastic beam has been a subject of debate. The symmetry of the tangent stiffness matrices derived by some researchers are tenuously attributed to the use of Lagrangian formulations, while the asymmetry of corotational tangent stiffness matrices is commonly attributed to the noncommutativity of spatial rotations. In this paper, the inconsistency regarding the symmetry of element tangent stiffness matrices formulated in the Lagrangian and the corotational frameworks is resolved. It is shown that, irrespective of the formulation framework, the element tangent stiffness matrix is invariably asymmetric. A “correction matrix” that enforces the proper rotational behavior of nodal moments into the conventional geometric stiffness matrix of an Updated Lagrangian spatial beam element is presented. It is demonstrated through a numerical example that adoption of this correction matrix is necessary for the detection of the lowest buck...

[1]  D. W. Scharpf,et al.  On large displacement-small strain analysis of structures with rotational degrees of freedom , 1978 .

[2]  S. Remseth,et al.  Nonlinear static and dynamic analysis of framed structures , 1979 .

[3]  D. W. Scharpf,et al.  On the geometrical stiffness of a beam in space—a consistent V.W. approach , 1979 .

[4]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[5]  Yeong-Bin Yang,et al.  Stiffness Matrix for Geometric Nonlinear Analysis , 1986 .

[6]  Yeong-Bin Yang,et al.  Joint Rotation and Geometric Nonlinear Analysis , 1986 .

[7]  Manolis Papadrakakis,et al.  Conjugate gradient algorithms in nonlinear structural analysis problems , 1986 .

[8]  Ziad M. Elias Theory and methods of structural analysis , 1986 .

[9]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[10]  Siu-Lai Chan Geometric and material non‐linear analysis of beam‐columns and frames using the minimum residual displacement method , 1988 .

[11]  Satya N. Atluri,et al.  ELASTO-PLASTIC LARGE DEFORMATION ANALYSIS OF SPACE-FRAMES: A PLASTIC-HINGE AND STRESS-BASED EXPLICIT DERIVATION OF TANGENT STIFFNESSES , 1988 .

[12]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[13]  M. J. Clarke,et al.  A study of incremental-iterative strategies for non-linear analyses , 1990 .

[14]  B. Izzuddin,et al.  Nonlinear dynamic analysis of framed structures , 1990 .

[15]  Faris Albermani,et al.  Nonlinear Analysis of Thin‐Walled Structures Using Least Element/Member , 1990 .

[16]  William R. Spillers,et al.  Geometric stiffness matrix for space frames , 1990 .

[17]  Aura Conci,et al.  Natural approach for geometric non‐linear analysis of thin‐walled frames , 1990 .

[18]  Kazuo Murota,et al.  Computation of Critical Initial Imperfection of Truss Structures , 1990 .

[19]  C. Rankin,et al.  Finite rotation analysis and consistent linearization using projectors , 1991 .

[20]  Reza Abbasnia,et al.  Large Deformation Analysis of Elastic Space Frames , 1991 .

[21]  J. C. Simo,et al.  The (symmetric) Hessian for geometrically nonlinear models in solid mechanics: intrinsic definition and geometric interpretation , 1992 .

[23]  Atef F. Saleeb,et al.  Effective modelling of spatial buckling of beam assemblages, accounting for warping constraints and rotation-dependency of moments , 1992 .

[24]  Markku Tuomala,et al.  Static and dynamic analysis of space frames using simple Timoshenko type elements , 1993 .

[25]  Amr S. Elnashai,et al.  Eulerian formulation for large-displacement analysis of space frames , 1993 .

[26]  B. A. Izzuddin Quartic formulation for elastic beam-columns subject to thermal effects , 1996 .

[27]  Bassam A. Izzuddin,et al.  Large Displacement Analysis of Elasto-Plastic Thin-Walled Frames Part I: Formulation and Implementation , 1996 .

[28]  M. A. Crisfield,et al.  Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics , 1997 .

[29]  Jaewook Rhim,et al.  A vectorial approach to computational modelling of beams undergoing finite rotations , 1998 .

[30]  M. J. Clarke,et al.  Co-rotational and Lagrangian formulations for elastic three-dimensional beam finite elements , 1998 .

[31]  Kuo Mo Hsiao,et al.  A consistent finite element formulation for linear buckling analysis of spatial beams , 1998 .

[32]  M. J. Clarke,et al.  New Definition of Conservative Internal Moments in Space Frames , 1999 .

[33]  Murray J. Clarke,et al.  Plastic-zone analysis of 3D steel frames using beam elements , 1999 .

[34]  Lip H. Teh,et al.  Tracing secondary equilibrium paths of elastic framed structures , 1999 .