The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms.
暂无分享,去创建一个
Mauro Biffoni | Nadia Felli | Alessandra Carè | Cesare Peschle | Antonella Stoppacciaro | M. Biffoni | A. Carè | F. Felicetti | Patrizia Segnalini | C. Peschle | M. Colombo | N. Felli | A. Stoppacciaro | Mario P Colombo | Federica Felicetti | M Cristina Errico | Lisabianca Bottero | Patrizia Segnalini | Gianfranco Mattia | Marina Petrini | M. Petrini | L. Bottero | M. C. Errico | G. Mattia
[1] C. Schirren. [The melanoma]. , 1962, Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete.
[2] M. N. Epstein,et al. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. , 1984, Human pathology.
[3] E. Price,et al. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes , 1998, Nature.
[4] M. Tainsky,et al. Loss of AP‐2 results in downregulation of c‐KIT and enhancement of melanoma tumorigenicity and metastasis , 1998, The EMBO journal.
[5] J. Nesland,et al. Protein expression of the cell-cycle inhibitor p27Kip1 in malignant melanoma: inverse correlation with disease-free survival. , 1998, The American journal of pathology.
[6] S. Bhattacharya,et al. Lineage-specific Signaling in Melanocytes , 1998, The Journal of Biological Chemistry.
[7] J. Licht,et al. PLZF induces megakaryocytic development, activates Tpo receptor expression and interacts with GATA1 protein , 2002, Oncogene.
[8] Patrick Cottin,et al. MAP Kinase-dependent Degradation of p27Kip1 by Calpains in Choroidal Melanoma Cells , 2003, The Journal of Biological Chemistry.
[9] G. Wood,et al. Apoptosis and melanoma: molecular mechanisms , 2003, The Journal of pathology.
[10] C. Cordon-Cardo,et al. Oncogenes in melanoma , 2003, Oncogene.
[11] F. Esteva,et al. Expression of cell cycle inhibitor p27Kip1 and its inactivator Jab1 in melanocytic lesions , 2004, Modern Pathology.
[12] A. Carè,et al. Role of PLZF in melanoma progression , 2004, Oncogene.
[13] C. Croce,et al. The role of microRNA genes in papillary thyroid carcinoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[14] C. Croce,et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[15] R. Marais,et al. Elevated expression of MITF counteracts B-RAF–stimulated melanocyte and melanoma cell proliferation , 2005, The Journal of cell biology.
[16] Alessandro Fatica,et al. A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis , 2005, Cell.
[17] G. Maira,et al. Extensive modulation of a set of microRNAs in primary glioblastoma. , 2005, Biochemical and biophysical research communications.
[18] Keiichi I Nakayama,et al. Molecular Dissection of the Interaction between p27 and Kip1 Ubiquitylation-promoting Complex, the Ubiquitin Ligase That Regulates Proteolysis of p27 in G1 Phase* , 2005, Journal of Biological Chemistry.
[19] N. Rajewsky,et al. Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.
[20] Jane Goodall,et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. , 2006, Genes & development.
[21] Wei Li,et al. The role of cell cycle regulatory proteins in the pathogenesis of melanoma , 2006, Pathology.
[22] D. Fisher,et al. MITF: master regulator of melanocyte development and melanoma oncogene. , 2006, Trends in molecular medicine.
[23] Laura Mariani,et al. MicroRNAs modulate the angiogenic properties of HUVECs. , 2006, Blood.
[24] C. Croce,et al. MicroRNA signatures in human cancers , 2006, Nature Reviews Cancer.
[25] F. Meyskens,et al. Microphthalmic-associated transcription factor integrates melanocyte biology and melanoma progression. , 2006, Clinical cancer research : an official journal of the American Association for Cancer Research.
[26] F. Slack,et al. Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.
[27] A. Koff. How to decrease p27Kip1 levels during tumor development. , 2006, Cancer cell.
[28] V. Alexeev,et al. Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. , 2006, The Journal of investigative dermatology.
[29] J. Wolchok,et al. Current topics in melanoma , 2007, Current opinion in oncology.
[30] Reuven Agami,et al. Regulation of the p27Kip1 tumor suppressor by miR‐221 and miR‐222 promotes cancer cell proliferation , 2007 .
[31] R. Marais,et al. Melanoma biology and new targeted therapy , 2007, Nature.
[32] C. Croce,et al. MicroRNA-133 controls cardiac hypertrophy , 2007, Nature Medicine.
[33] Giovanni Vanni Frajese,et al. miR-221 and miR-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27Kip1* , 2007, Journal of Biological Chemistry.
[34] Thomas D. Schmittgen,et al. Expression profiling identifies microRNA signature in pancreatic cancer , 2006, International journal of cancer.
[35] Weixiong Zhang,et al. Characterization and Identification of MicroRNA Core Promoters in Four Model Species , 2007, PLoS Comput. Biol..
[36] G. Tchernev,et al. Downregulation of cell cycle modulators p21, p27, p53, Rb and proapoptotic Bcl‐2‐related proteins Bax and Bak in cutaneous melanoma is associated with worse patient prognosis: preliminary findings , 2007, Journal of cutaneous pathology.
[37] G. Salti,et al. Role of microphthalmia transcription factor (Mitf) in melanoma differentiation. , 2007, Biochemical and biophysical research communications.
[38] Jordan S. Pober,et al. Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells , 2007, Circulation research.
[39] N. Dhomen,et al. New insight into BRAF mutations in cancer. , 2007, Current opinion in genetics & development.
[40] J. Fletcher,et al. KIT mutations in GIST. , 2007, Current opinion in genetics & development.