Heterotrophic flagellates increase microalgal biomass yield

[1]  H. B. Gotaas,et al.  ALGAE IN WASTE TREATMENT , 2016 .

[2]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[3]  Elena Litchman,et al.  Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. , 2013, Ecology letters.

[4]  A. D. Barton,et al.  On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities , 2013 .

[5]  R. Sims,et al.  Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. , 2011, Biotechnology advances.

[6]  F. Bux,et al.  Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production , 2011 .

[7]  Oliver R. Inderwildi,et al.  Life cycle energy and greenhouse gas analysis for algae-derived biodiesel , 2011 .

[8]  C. Lowe,et al.  Feeding in the dinoflagellate Oxyrrhis marina: linking behaviour with mechanisms , 2011 .

[9]  A. Shilton,et al.  Wastewater treatment high rate algal ponds for biofuel production. , 2011, Bioresource technology.

[10]  J. Pittman,et al.  The potential of sustainable algal biofuel production using wastewater resources. , 2011, Bioresource technology.

[11]  Q. Hu,et al.  Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. , 2011, Bioresource technology.

[12]  R. Wijffels,et al.  An Outlook on Microalgal Biofuels , 2010, Science.

[13]  L. Laurens,et al.  Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics , 2010 .

[14]  V. Smith,et al.  The ecology of algal biodiesel production. , 2010, Trends in ecology & evolution.

[15]  Andrew Hoadley,et al.  Dewatering of microalgal cultures : a major bottleneck to algae-based fuels , 2010 .

[16]  M. Stockenreiter,et al.  The effect of species diversity on lipid production by micro-algal communities , 2010, Journal of Applied Phycology.

[17]  Q. Hu,et al.  Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. , 2008, The Plant journal : for cell and molecular biology.

[18]  Elena Litchman,et al.  The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. , 2007, Ecology letters.

[19]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[20]  H. Jeong,et al.  Feeding by heterotrophic dinoflagellates on the common marine heterotrophic nanoflagellate Cafeteria sp. , 2007 .

[21]  P. Dufour,et al.  Organic carbon release by phytoplankton and bacterial reassimilation , 1988, Swiss journal of hydrology.

[22]  T.,et al.  Ecology of Heterotrophic Microflagellates . IV . Quantitative Occurrence and Importance as Bacterial Consumers , 2006 .

[23]  L. Barsanti,et al.  Algae: Anatomy, Biochemistry, and Biotechnology , 2005 .

[24]  Y. Bashan,et al.  Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. , 2004, Water research.

[25]  Jessica Gurevitch,et al.  THE META‐ANALYSIS OF RESPONSE RATIOS IN EXPERIMENTAL ECOLOGY , 1999 .

[26]  Helmut Hillebrand,et al.  BIOVOLUME CALCULATION FOR PELAGIC AND BENTHIC MICROALGAE , 1999 .

[27]  James P. Hoffmann,et al.  WASTEWATER TREATMENT WITH SUSPENDED AND NONSUSPENDED ALGAE , 1998 .

[28]  K. Rothhaupt Nutrient turnover by freshwater bacterivorous flagellates: differences between a heterotrophic and a mixotrophic chrysophyte , 1997 .

[29]  J. D. Eccleston-Parry,et al.  Regeneration of phosphorus and nitrogen by four species of heterotrophic nanoflagellates feeding on three nutritional States of a single bacterial strain , 1995, Applied and environmental microbiology.

[30]  K. Jiirgens,et al.  Incorporation and release of phosphorus by planktonic bacteria and phagotrophic flagellates , 1990 .

[31]  P. Thompson,et al.  Light‐limited growth on ammonium vs. nitrate: What is the advantage for marine phytoplankton? , 1989 .

[32]  T. Fenchel The ecology of heterotrophic microflagellates , 1986 .

[33]  J. Fuhrman,et al.  Bacterioplankton growth in seawater: I.Growth kinetics and cellular characteristics in seawater cultures , 1984 .

[34]  J. G. Field,et al.  The Ecological Role of Water-Column Microbes in the Sea* , 1983 .

[35]  D. Strayer,et al.  Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria1 , 1982 .

[36]  Jonathan J. Cole,et al.  INTERACTIONS BETWEEN BACTERIA AND ALGAE IN AQUATIC ECOSYSTEMS , 1982 .

[37]  T. Fenchel Ecology of Heterotrophic Microflagellates. IV Quantitative Occurrence and Importance as Bacterial Consumers , 1982 .

[38]  A. Neilson,et al.  The utilization of organic nitrogen for growth of algae: physiological aspects , 1980 .

[39]  U. Larsson,et al.  Phytoplankton exudate release as an energy source for the growth of pelagic bacteria , 1979 .

[40]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[41]  W. Smith,et al.  Culture of Marine Invertebrate Animals , 1975, Springer US.

[42]  R. E. Johannes INFLUENCE OF MARINE PROTOZOA ON NUTRIENT REGENERATION1 , 1965 .

[43]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[44]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .