A NEW GENERALIZATION OF BURR XII DISTRIBUTION

In this paper, we propose a new model, so-called the beta exponentiated Burr XII distribution, which contains as special sub-models some well-known and new distributions, such as the beta Burr XII, beta exponentiated log-logistic, beta exponentiated Lomax, beta log-logistic, beta Lomax, exponentiated Burr XII, exponentiated log-logistic, exponentiated Lomax, Burr XII, log-logistic, and Lomax, among several others. Various structural properties of the new distribution are derived, including explicit expressions for the moments, incomplete moments, mean deviations, quantile function, and Renyi entropy. The method of maximum likelihood is proposed for estimating the model parameters. We obtain the observed information matrix. Two real data sets illustrate the importance and flexibility of the proposed model.

[1]  Gauss M. Cordeiro,et al.  The beta generalized exponential distribution , 2008, 0809.1889.

[2]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[3]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[4]  I. W. Burr Cumulative Frequency Functions , 1942 .

[5]  Artur J. Lemonte The beta log-logistic distribution , 2014 .

[6]  Gauss M. Cordeiro,et al.  The beta Burr XII distribution with application to lifetime data , 2011, Comput. Stat. Data Anal..

[7]  F. Condino,et al.  The Beta-Dagum Distribution: Definition and Properties , 2013 .

[8]  Alexandre B. Simas,et al.  Some Results for Beta Fréchet Distribution , 2008, 0809.1873.

[9]  Gauss M. Cordeiro,et al.  The beta generalized Rayleigh distribution with applications to lifetime data , 2013 .

[10]  M. E. Mead,et al.  Generalized Inverse Gamma Distribution and its Application in Reliability , 2015 .

[11]  G. Cordeiro,et al.  Two Extended Burr Models: Theory and Practice , 2015 .

[12]  Narayanaswamy Balakrishnan,et al.  On families of beta- and generalized gamma-generated distributions and associated inference , 2009 .

[13]  Pandu R. Tadikamalla,et al.  A Look at the Burr and Related Distributioni , 1980 .

[14]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[15]  Gauss M. Cordeiro,et al.  The beta modified Weibull distribution , 2010, Lifetime data analysis.

[16]  Narayanaswamy Balakrishnan,et al.  A General Purpose Approximate Goodness-of-Fit Test , 1995 .

[17]  Gauss M. Cordeiro,et al.  The Kumaraswamy Burr XII distribution: theory and practice , 2013 .

[18]  F. Famoye,et al.  BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .

[19]  M Zelen,et al.  Estimation of exponential survival probabilities with concomitant information. , 1965, Biometrics.

[20]  Kazuya Kobayashi,et al.  On Generalized Gamma Functions Occurring in Diffraction Theory , 1991 .

[21]  Gauss M. Cordeiro,et al.  The Beta Exponentiated Pareto Distribution with Application to Bladder Cancer Susceptibility , 2012 .

[22]  M. Nassar,et al.  THE BETA GENERALIZED PARETO DISTRIBUTION , 2011 .

[23]  Gauss M. Cordeiro,et al.  An extended Lomax distribution , 2013 .

[24]  G. Cordeiro,et al.  The Gamma-Exponentiated Weibull Distribution , 2012 .