Operando Synchrotron X-ray Diffraction Studies on TiS2: The Effect of Propylene Carbonate on Reduction Mechanism

[1]  M. R. Palacín,et al.  Steps Towards the Use of TiS2 Electrodes in Ca Batteries , 2020, Journal of The Electrochemical Society.

[2]  P. Johansson,et al.  Cation Solvation and Physicochemical Properties of Ca Battery Electrolytes , 2019, The journal of physical chemistry. C, Nanomaterials and interfaces.

[3]  R. Dugas,et al.  Methods and Protocols for Reliable Electrochemical Testing in Post-Li Batteries (Na, K, Mg, and Ca) , 2019, Chemistry of materials : a publication of the American Chemical Society.

[4]  P. Simon,et al.  A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage , 2019, Energy Storage Materials.

[5]  M. Winter,et al.  Before Li Ion Batteries. , 2018, Chemical reviews.

[6]  A. Sorrentino,et al.  Electrochemical Intercalation of Calcium and Magnesium in TiS2: Fundamental Studies Related to Multivalent Battery Applications , 2018 .

[7]  Lei Cheng,et al.  Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. , 2017, Chemical reviews.

[8]  Anton Van der Ven,et al.  Stability of Prismatic and Octahedral Coordination in Layered Oxides and Sulfides Intercalated with Alkali and Alkaline-Earth Metals , 2016 .

[9]  L. Nazar,et al.  Layered TiS2 Positive Electrode for Mg Batteries , 2016 .

[10]  F. Fauth,et al.  A novel high-throughput setup for in situ powder diffraction on coin cell batteries , 2016 .

[11]  F. Gil-Ortiz,et al.  The crystallography stations at the Alba synchrotron , 2015 .

[12]  A. Van der Ven,et al.  Mg intercalation in layered and spinel host crystal structures for Mg batteries. , 2015, Inorganic chemistry.

[13]  R. Hamlen,et al.  Lithium–titanium disulfide rechargeable cell performance after 35 years of storage , 2015 .

[14]  F. Fauth,et al.  The new Material Science Powder Diffraction beamline at ALBA Synchrotron , 2013, Powder Diffraction.

[15]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[16]  Stéphanie Belin,et al.  An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation , 2010 .

[17]  M. Wohlfahrt‐Mehrens,et al.  Film formation in LiBOB-containing electrolytes , 2006 .

[18]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[19]  J. Tarascon,et al.  Li Metal‐Free Rechargeable LiMn2 O 4 / Carbon Cells: Their Understanding and Optimization , 1992 .

[20]  J. Dahn,et al.  In situ X-ray diffraction experiments on lithium intercalation compounds , 1982 .

[21]  A. H. Thompson,et al.  Structural studies on LixTiS2 , 1981 .

[22]  J. Dahn,et al.  Structure Determination of Lixtis2 by Neutron-Diffraction , 1980 .

[23]  B. Rao,et al.  In situ studies of electrode reactions: The mechanism of lithium intercalation in TiS2 , 1979 .

[24]  M. Whittingham Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1979 .

[25]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[26]  F. McTaggart,et al.  The sulphides, Selenides, and Tellurides of Titanium, Zirconium, Hafnium, and Thorium. III. Electrical properties , 1958 .