Computational and experimental studies of size and shape related physical properties of hydroxyapatite nanoparticles
暂无分享,去创建一个
A. Kholkin | V. Bystrov | A. Katashev | A. Bystrova | E. Paramonova | N. Polyaka | Y. Dekhtyar | A. Patmalnieks | A. Karlov
[1] D. Uskoković,et al. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.
[2] S. Dorozhkin,et al. Nanosized and nanocrystalline calcium orthophosphates. , 2010, Acta biomaterialia.
[3] I. Khlusov,et al. Influence of Bioimplant Surface Electrical Potential on Osteoblast Behavior and Bone Tissue Formation , 2010 .
[4] Matthias Epple,et al. Application of calcium phosphate nanoparticles in biomedicine , 2010 .
[5] В.С. Быстров,et al. Взаимодействие заряженного гидроксиапатита и живых клеток. I. Свойства поляризации гидроксиапатита , 2009 .
[6] A. V. Karlov,et al. Size Depended Electrical Properties of Hydroxyapatite Nanoparticles , 2009 .
[7] Xurong Xu,et al. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level. , 2008, Langmuir : the ACS journal of surfaces and colloids.
[8] Haijiao Zhang,et al. Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants , 2008, Nanotechnology.
[9] M. Martins,et al. Hydroxyapatite micro- and nanoparticles: nucleation and growth mechanisms in the presence of citrate species. , 2008, Journal of colloid and interface science.
[10] Serena M. Best,et al. Bioceramics: Past, present and for the future , 2008 .
[11] Sang Cheon Lee,et al. The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites , 2007 .
[12] Daniel Aronov,et al. Electronic states spectroscopy of Hydroxyapatite ceramics , 2007, Journal of materials science. Materials in medicine.
[13] K. Onuma. Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms , 2006 .
[14] S. V. Filippov,et al. Modeling and Computation of Hydroxyapatite Nanostructures and Properties , 2006 .
[15] V. Bystrov,et al. Natively charged hydroxyapatite nanopoparticles for implants , 2006 .
[16] K. Stanton,et al. Structural Order and Dielectric Behaviour of Hydroxyapatite , 2005 .
[17] W. Ching,et al. Electronic structure and bonding in calcium apatite crystals: Hydroxyapatite, fluorapatite, chlorapatite, and bromapatite , 2004 .
[18] A. Sombra,et al. Dielectric permittivity and loss of hydroxyapatite screen-printed thick films , 2003 .
[19] M. J. Stott,et al. Biological calcium phosphates and Posner’s cluster , 2003 .
[20] K. Yamashita,et al. Huge, Millicoulomb Charge Storage in Ceramic Hydroxyapatite by Bimodal Electric Polarization , 2002 .
[21] S. Nakamura,et al. Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. , 2001, Journal of biomedical materials research.
[22] H. Takeda,et al. Proton transport polarization and depolarization of hydroxyapatite ceramics , 2001 .
[23] T. Ikoma,et al. Preparation and dielectric property of sintered monoclinic hydroxyapatite , 1999 .
[24] I. Rehman,et al. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy , 1997, Journal of materials science. Materials in medicine.
[25] B. Eppley,et al. Stimulation of craniofacial and intramedullary bone formation by negatively charged beads. , 1990, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.
[26] K. Crowley,et al. Structural variations in natural F, OH, and Cl apatites , 1989 .
[27] R. Young,et al. OH− dipole reorientability in hydroxyapatites: Effect of tunnel size , 1986 .
[28] F. Stern,et al. Electronic properties of two-dimensional systems , 1982 .