Dynamic Performance of a New-Type PSC I-girder for Railway Bridge Application

This study intends to verify analytically and experimentally the performance of a new type of prestressed concrete (PSC) I-girder for its application as railway bridge. Since the girder-type railway bridge develops relatively low torsional rigidity, there is risk for the dynamic responses to amplify due to the superposition of the torsional mode and flexural mode. The superposition of the torsional and flexural modes as well as the dynamic stability of the railway bridge were examined through dynamic analysis. Three-dimensional modelling was built to be suitable for carrying out moving load analysis. Four different span lengths of 30, 35, 40 and 45 m adopted considering the most applied span length currently and future lengthening of the span length. Moreover, a full-scale girder specimen with span length of 35 m was fabricated and subjected to dynamic loading. The measured dynamic responses were then compared to the analytic values. Finally, the ultimate bearing capacity of the specimen was verified by static loading test.