Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 - a comparison of results from solid state NMR and impedance spectroscopy.

The cubic spinel oxides Li(1+x)Ti(2-x)O(4) (0 < or =x< or = 1/3) are promising anode materials for lithium-ion rechargeable batteries. The end member of the Li-Ti-O series, Li(4)Ti(5)O(12), can accommodate Li ions up to the composition Li(7)Ti(5)O(12). Whereas a number of studies focus on the electrochemical behaviour of Li insertion into and Li diffusion in the Li intercalated material, only few investigations about low-temperature Li dynamics in the non-intercalated host material Li(4)Ti(5)O(12) have been reported so far. In the present paper, Li diffusion in pure-phase microcrystalline Li(4)Ti(5)O(12) with an average particle size in the microm range was probed by (7)Li solid state NMR spectroscopy using spin-alignment echo (SAE) and spin-lattice relaxation (SLR) measurements. Between T = 295 K and 400 K extremely slow Li jump rates tau(-1) ranging from 1 s(-1) to about 2200 s(-1) were directly measured by recording the decay of spin-alignment echoes as a function of mixing time and constant evolution time. The results point out the slow Li diffusion in non-intercalated Li(4)Ti(5)O(12) x tau(-1) (1/T) follows Arrhenius behaviour with an activation energy E(ASAE) of about 0.86 eV. Interestingly, E(ASAE) is comparable to activation energies deduced from conductivity measurements (0.94(1) eV) and from SLR measurements in the rotating frame (0.74(2) eV) rather than from those performed in the laboratory frame, E(A)(low-T) = 0.26(1) eV at low T.

[1]  P. Heitjans,et al.  New prospects in studying Li diffusion—two-time stimulated echo NMR of spin-3/2 nuclei , 2006 .

[2]  P. Heitjans,et al.  Extremely slow cation exchange processes in Li4SiO4 probed directly by two-time 7Li stimulated-echo nuclear magnetic resonance spectroscopy , 2006 .

[3]  P. Heitjans,et al.  From ultraslow to fast lithium diffusion in the 2D ion conductor Li0.7TiS2 probed directly by stimulated-echo NMR and nuclear magnetic relaxation. , 2006, Physical review letters.

[4]  G. Goward,et al.  7Li NMR and Two-Dimensional Exchange Study of Lithium Dynamics in Monoclinic Li3V2(PO4)3 , 2006 .

[5]  U. Lee,et al.  Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere , 2006 .

[6]  Venkat Srinivasan,et al.  Optimization of Lithium Titanate Electrodes for High-Power Cells , 2006 .

[7]  P. Bruce,et al.  TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries , 2006 .

[8]  Xinxin Ma,et al.  Anomalous ion accelerated bulk diffusion of interstitial nitrogen. , 2006, Physical review letters.

[9]  A. Heuer,et al.  Silver ion dynamics in the Ag5Te2Cl-polymorphs revealed by solid state NMR lineshape and two- and three-time correlation spectroscopies. , 2006, Physical chemistry chemical physics : PCCP.

[10]  H. Munakata,et al.  Preparation of micro-dot electrodes of LiCoO2 and Li4Ti5O12 for lithium micro-batteries , 2005 .

[11]  B. Scrosati,et al.  Sustainable High-Voltage Lithium Ion Polymer Batteries , 2005 .

[12]  P. Heitjans,et al.  Ion hopping in crystalline and glassy spodumene , 2005 .

[13]  P. Heitjans,et al.  Ion hopping in crystalline and glassy spodumene Li Al Si 2 O 6 : Li 7 spin-lattice relaxation and Li 7 echo NMR spectroscopy , 2005 .

[14]  J. Cabana,et al.  Ex situ nmr and neutron diffraction study of structure and lithium motion in Li7MnN4 , 2005 .

[15]  Xuelin Yang,et al.  Research on Li4Ti5O12 ∕ Cu x O Composite Anode Materials for Lithium-Ion Batteries , 2005 .

[16]  P. Heitjans,et al.  Ultraslow Diffusion in Polycrystalline h-LiTiS2 Studied by 7Li Spin-Alignment Echo NMR Spectroscopy , 2005 .

[17]  P. Heitjans,et al.  Impedance Spectroscopy Study of Li Ion Dynamics in Single Crystal, Microcrystalline, Nanocrystalline and Amorphous LiNbO3 , 2005 .

[18]  Roland Böhmer,et al.  Silver ion dynamics in silver borate glasses , 2004 .

[19]  M. Wohlfahrt‐Mehrens,et al.  A Safe, Low-Cost, and Sustainable Lithium-Ion Polymer Battery , 2004 .

[20]  R. Böhmer,et al.  Simple modeling of dipolar coupled 7Li spins and stimulated-echo spectroscopy of single-crystalline beta-eucryptite. , 2004, Journal of magnetic resonance.

[21]  R. Samigullina,et al.  Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12 , 2003 .

[22]  A. Heuer,et al.  Origin of nonexponential relaxation in a crystalline ionic conductor: A multidimensional 109Ag NMR study , 2003, cond-mat/0310256.

[23]  P. Heitjans,et al.  Diffusion and Ionic Conduction in Nanocrystalline Ceramics , 2003 .

[24]  T. Matsushima,et al.  Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells , 2003 .

[25]  Irene M. Plitz,et al.  A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications , 2003 .

[26]  R. Böhmer,et al.  Stimulated-echo NMR spectroscopy of 9Be and 7Li in solids , 2002 .

[27]  R. Böhmer,et al.  Stimulated-echo NMR spectroscopy of 9Be and 7Li in solids: method and application to ion conductors. , 2002, Solid state nuclear magnetic resonance.

[28]  A. Heuer,et al.  Two-dimensional 109Ag NMR and random-walk simulation studies of silver dynamics in glassy silver ion conductors. , 2002, Solid state nuclear magnetic resonance.

[29]  A. Heuer,et al.  Silver dynamics in silver iodide/silver phosphate glasses studied by multi-dimensional 109Ag NMR , 2002 .

[30]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[31]  F. M. Mulder,et al.  Lithium dynamics in LiMn2O4 probed directly by two-dimensional (7)Li NMR. , 2001, Physical review letters.

[32]  R. Böhmer Multiple-time correlation functions in spin-3/2 solid-state NMR spectroscopy , 2000 .

[33]  J. Irvine,et al.  An NMR investigation of lithium occupancy of different sites in the oxide superconductor LiTi2O4 and related compounds , 2000 .

[34]  P. Heitjans,et al.  Nanocrystalline versus microcrystalline Li(2)O:B(2)O3 composites: anomalous ionic conductivities and percolation theory , 2000, Physical review letters.

[35]  R. Böhmer,et al.  Stimulated 7Li echo NMR spectroscopy of slow ionic motions in a solid electrolyte , 2000 .

[36]  W. Johnson,et al.  Diffusion mechanisms in metallic supercooled liquids and glasses , 1999, Nature.

[37]  Karim Zaghib,et al.  Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries , 1999 .

[38]  W. Johnson,et al.  Slow Atomic Motion in Zr-Ti-Cu-Ni-Be Metallic Glasses Studied by NMR , 1998 .

[39]  Tang,et al.  Alignment echo of spin-3/2 9Be nuclei: detection of ultraslow motion , 1998, Journal of magnetic resonance.

[40]  P. Heitjans,et al.  Nuclear magnetic and conductivity relaxations by Li diffusion in glassy and crystalline LiAlSi4O10 , 1997 .

[41]  W. Dieterich,et al.  Ion dynamics in structurally disordered materials: effects of random Coulombic traps , 1996 .

[42]  J. Stebbins,et al.  Cation Dynamics and Diffusion in Lithium Orthosilicate: Two-Dimensional Lithium-6 NMR , 1995, Science.

[43]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[44]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[45]  P. Edwards,et al.  A 7Li NMR study of the superconducting spinel Li1+xTi2-xO4 , 1994 .

[46]  P. Heitjans,et al.  A.C. Impedance Studies of Glassy and Crystalline Lithium Aluminosilicate Compounds , 1992 .

[47]  Steve W. Martin,et al.  A new problem in the correlation of nuclear‐spin relaxation and ionic conductivity in superionic glasses , 1992 .

[48]  K. Ngai,et al.  Comparisons between the coupling model predictions, Monte Carlo simulations and some recent experimental data of conductivity relaxations in glassy ionics , 1992 .

[49]  Mártin,et al.  Correlation between the activation enthalpy and Kohlrausch exponent for ionic conductivity in oxide glasses. , 1989, Physical review. B, Condensed matter.

[50]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[51]  H. Spiess Deuteron spin alignment: A probe for studying ultraslow motions in solids and solid polymers , 1980 .

[52]  W. Müller-Warmuth,et al.  7Li NMR spectra, nuclear relaxation, and lithium ion motion in alkali silicate, borate, and phosphate glasses , 1979 .

[53]  Jean Jeener,et al.  Nuclear Magnetic Resonance in Solids: Thermodynamic Effects of a Pair of rf Pulses , 1967 .

[54]  E. Purcell,et al.  Relaxation Effects in Nuclear Magnetic Resonance Absorption , 1948 .

[55]  P. Heitjans,et al.  NMR and impedance studies of nanocrystalline and amorphous ion conductors: lithium niobate as a model system. , 2007, Faraday discussions.

[56]  R. Böhmer,et al.  Silver ion dynamics in silver borate glasses: spectra and multiple-time correlation functions from 109Ag-NMR. , 2005, Solid state nuclear magnetic resonance.

[57]  P. Heitjans,et al.  AC and DC Conductivity in Nano- and Microcrystalline Li2O : B2O3 Composites: Experimental Results and Theoretical Models , 2005 .

[58]  P. Heitjans,et al.  Diffusion in Condensed Matter , 2005 .

[59]  L. Kavan,et al.  Li Insertion into Li[sub 4]Ti[sub 5]O[sub 12] (Spinel) , 2003 .

[60]  A. Jansen,et al.  Studies of Mg-substituted Li{sub 4x4}Mg{sub x}Ti{sub 5}O{sub 12} spinel electrodes (0{le}x{le}1) for lithium batteries. , 2001 .

[61]  K. Funke,et al.  Jump relaxation in solid electrolytes , 1993 .