Lorentz violation at high energy: Concepts, phenomena, and astrophysical constraints

Abstract We consider here the possibility of quantum gravity induced violation of Lorentz symmetry (LV). Even if suppressed by the inverse Planck mass such LV can be tested by current experiments and astrophysical observations. We review the effective field theory approach to describing LV, the issue of naturalness, and many phenomena characteristic of LV. We discuss some of the current observational bounds on LV, focusing mostly on those from high energy astrophysics in the QED sector at order E/MPlanck. In this context, we present a number of new results which include the explicit computation of rates of the most relevant LV processes, the derivation of a new photon decay constraint, and modification of previous constraints taking proper account of the helicity dependence of the LV parameters implied by effective field theory.

[1]  Clifford M. Will,et al.  Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism , 1972 .

[2]  J. Barrow,et al.  Evidence for Time Variation of the Fine Structure Constant , 1998 .

[3]  J. Magueijo New varying speed of light theories , 2003, astro-ph/0305457.

[4]  S. Boggs,et al.  Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002 , 2003, Nature.

[5]  C. Wunderer,et al.  Testing Lorentz Invariance with GRB 021206 , 2003, astro-ph/0310307.

[6]  Cosmic physics: the high energy frontier , 2003, astro-ph/0309027.

[7]  J. Bjorken A Dynamical origin for the electromagnetic field , 1963 .

[8]  A. Kostelecký,et al.  Signals for Lorentz violation in electrodynamics , 2002, hep-ph/0205211.

[9]  V. Kostelecký,et al.  Vacuum photon splitting in Lorentz-violating quantum electrodynamics. , 2002, Physical review letters.

[10]  G. Amelino-Camelia Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale , 2000, gr-qc/0012051.

[11]  TeV astrophysics constraints on Planck scale Lorentz violation , 2001, hep-ph/0112207.

[12]  F. Stecker Constraints on Lorentz invariance violating quantum gravity and large extra dimensions models using high energy γ-ray observations , 2003, astro-ph/0308214.

[13]  Perturbative analysis on infrared and ultraviolet aspects of noncommutative QED on R^4 , 1999, hep-th/9912167.

[14]  C. Isham Structural issues in quantum gravity , 1995, gr-qc/9510063.

[15]  J. Ellis,et al.  Uncertainties in the proton lifetime , 1980 .

[16]  J. Ellis,et al.  Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in Vacuo , 1997, astro-ph/9712103.

[17]  Igor G. Mitrofanov,et al.  Condensed-matter physics (communication arising): Spurious magnetism in high-Tc superconductor , 2003, Nature.

[18]  T. Jacobson,et al.  New limits on Planck scale Lorentz violation in QED. , 2003, Physical review letters.

[19]  J. Butterfield,et al.  On the Emergence of Time in Quantum Gravity , 1999 .

[20]  Cheng,et al.  Lorentz noninvariance and the Eötvös experiments. , 1985, Physical review. D, Particles and fields.

[21]  A. Zee Perhaps proton decay violates Lorentz invariance , 1982 .

[22]  Alan Kostelecky,et al.  Lorentz-Violating Extension of the Standard Model , 1998 .

[23]  Theory and Experiment in Gravitational Physics , 1982 .

[24]  M. Pospelov,et al.  EXPERIMENTAL CHALLENGES FOR QUANTUM GRAVITY , 2004, gr-qc/0402028.

[25]  J. Ellis,et al.  Space-Time Foam may Violate the Principle of Equivalence , 2003, gr-qc/0312044.

[26]  V. Mitsou,et al.  A Search in Gamma-Ray Burst Data for Nonconstancy of the Velocity of Light , 2000 .

[27]  M. Hayakawa Perturbative analysis on infrared aspects of noncommutative QED on R4 , 2000 .

[28]  R. Lehnert,et al.  Čerenkov effect in Lorentz-violating vacua , 2004 .

[29]  Sami G. Tantawi,et al.  Measurements of the suitability of large rock salt formations for radio detection of high-energy neutrinos , 2001, hep-ex/0108027.

[30]  S. Boggs,et al.  Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002. , 2003, Nature.

[31]  Unruh Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. , 1994, Physical review. D, Particles and fields.

[32]  John Ellis,et al.  Tests of quantum gravity from observations of γ-ray bursts , 1998, Nature.

[33]  R. J. Crewther,et al.  Introduction to quantum field theory , 1995, hep-th/9505152.

[34]  G. Sterman An Introduction To Quantum Field Theory , 1994 .

[35]  Perturbative approach to higher derivative theories with fermions , 2002, hep-th/0206077.

[36]  Gamma Ray Bursts as Probes of Quantum Gravity , 2004, astro-ph/0407462.

[37]  Samuel,et al.  Spontaneous breaking of Lorentz symmetry in string theory. , 1989, Physical review. D, Particles and fields.

[38]  G. Amelino-Camelia DOUBLY-SPECIAL RELATIVITY: FIRST RESULTS AND KEY OPEN PROBLEMS , 2002, gr-qc/0210063.

[39]  Jérôme Martin,et al.  Dependence of the spectra of fluctuations in inflationary cosmology on trans-Planckian physics , 2003, hep-th/0305161.

[40]  V V Flambaum,et al.  Further evidence for cosmological evolution of the fine structure constant. , 2001, Physical review letters.

[41]  Threshold effects and Planck scale Lorentz violation: Combined constraints from high-energy astrophysics , 2002, hep-ph/0209264.

[42]  Sidney Coleman,et al.  High-energy tests of Lorentz invariance , 1999 .

[43]  J. Collins,et al.  Lorentz invariance: an additional fine-tuning problem , 2004 .

[44]  H. Nielsen,et al.  Lorentz non-invariance , 1983 .

[45]  R. Hellings,et al.  Vector-metric theory of gravity , 1973 .

[46]  Lorentz and CPT tests in matter and antimatter , 2003, hep-ph/0308281.

[47]  M. Gasperini Singularity prevention and broken Lorentz symmetry , 1987 .

[48]  H. Kitamura,et al.  Extension of the Cosmic-Ray Energy Spectrum Beyond the Predicted Greisen-Zatsepin-Kuz'min Cutoff , 1998, astro-ph/9807193.

[49]  Meeting on Cpt,et al.  Proceedings of the Second Meeting on CPT and Lorentz Symmetry, Bloomington, USA, 15-18 August 2001 , 2002 .

[50]  Perturbative approach to higher derivative and nonlocal theories , 2001, hep-th/0111160.

[51]  F. W. Stecker,et al.  New tests of Lorentz invariance following from observations of the highest energy cosmic γ-rays , 2001 .

[52]  T. Jacobson,et al.  A strong astrophysical constraint on the violation of special relativity by quantum gravity , 2003, Nature.

[53]  P. Dirac,et al.  Is there an Æther? , 1951, Nature.

[54]  Supersymmetry and the Lorentz fine tuning problem , 2005, hep-ph/0502106.

[55]  About Lorentz invariance in a discrete quantum setting , 2004, gr-qc/0405085.

[56]  Luis Javier Garay Elizondo,et al.  Quantum-gravity and minimum length , 1995 .

[57]  Distance Measurement and Wave Dispersion in a Liouville-String Approach to Quantum Gravity , 1996, hep-th/9605211.

[58]  Karel V. Kuchař,et al.  TIME AND INTERPRETATIONS OF QUANTUM GRAVITY , 2011 .

[59]  G. Gelmini,et al.  On photon splitting in theories with Lorentz invariance violation , 2005, hep-ph/0503130.

[60]  W. Kluźniak Transparency of the universe to TeV photons in some models of quantum gravity , 1999 .

[61]  Lorentz Symmetry Violation and High-Energy Cosmic Rays , 1997, physics/9712005.

[62]  Lorentz invariance as a low energy phenomenon , 1983 .

[63]  Jacobson,et al.  Black-hole evaporation and ultrashort distances. , 1991, Physical review. D, Particles and fields.

[64]  K. Greisen End to the cosmic ray spectrum , 1966 .

[65]  T. Konopka,et al.  Observational limits on quantum geometry effects , 2002, hep-ph/0201184.

[66]  Reinaldo J. Gleiser,et al.  Astrophysical limits on quantum gravity motivated birefringence , 2001 .

[67]  Superfluid analogies of cosmological phenomena , 2000, gr-qc/0005091.

[68]  Daniel Sudarsky,et al.  Lorentz invariance and quantum gravity: an additional fine-tuning problem? , 2004, Physical review letters.

[69]  J. Gundlach,et al.  Torsion Balance Test of Spin Coupled Forces , 2002 .

[70]  W. Hajdas,et al.  Gamma-Ray Burst Polarization: Limits from RHESSI Measurements , 2004, astro-ph/0405525.

[71]  Loop-generated bounds on changes to the graviton dispersion relation , 2002, hep-ph/0201082.

[72]  Synchrotron radiation from the Crab Nebula discriminates between models of space–time foam , 2003, astro-ph/0308403.

[73]  Lane,et al.  Limit on lorentz and CPT violation of the neutron using a two-species noble-Gas maser , 2000, Physical review letters.

[74]  Joe Henson,et al.  QUANTUM GRAVITY PHENOMENOLOGY, LORENTZ INVARIANCE AND DISCRETENESS , 2003, gr-qc/0311055.

[75]  John K. Webb,et al.  SEARCH FOR TIME VARIATION OF THE FINE STRUCTURE CONSTANT , 1999 .

[76]  R. Lehnert,et al.  Stability, causality, and Lorentz and CPT violation , 2000, hep-th/0012060.

[77]  F. Aharonian,et al.  On the mechanisms of gamma radiation in the Crab Nebula , 1996 .

[78]  Rodolfo Gambini,et al.  Nonstandard optics from quantum space-time , 1999 .

[79]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[80]  T. Banks,et al.  Comments on Non-Commutative Phenomenology , 2001, hep-ph/0106356.

[81]  David T. Fraebel,et al.  Upper limit of the spectrum of cosmic rays , 1966 .

[82]  Photon decay in a CPT-violating extension of quantum electrodynamics , 2002, hep-th/0212028.

[83]  D. Thompson,et al.  Gamma-Ray Observations of the Crab Nebula: A Study of the Synchro-Compton Spectrum , 1996 .

[84]  Giovanni Amelino-Camelia,et al.  Phenomenology of Planck-scale Lorentz-symmetry test theories , 2004 .

[85]  C. Will,et al.  Conservation Laws and Preferred Frames in Relativistic Gravity. II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity , 1972 .

[86]  Michael Creutz,et al.  Quarks, Gluons and Lattices , 1984 .

[87]  G. Amelino-Camelia,et al.  Planck Scale Effects in Astrophysics and Cosmology , 2005 .

[88]  F. Klinkhamer,et al.  Comment on "Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics" , 2003, hep-ph/0312153.

[89]  John G. Kirk,et al.  Modeling the TeV Gamma-Ray Spectra of Two Low-Redshift Active Galactic Nuclei: Markarian 501 and Markarian 421 , 2003, astro-ph/0302049.

[90]  T. Weekes,et al.  Limits to Quantum Gravity Effects on Energy Dependence of the Speed of Light from Observations of TeV Flares in Active Galaxies , 1999 .

[91]  R. Montemayor,et al.  Synchrotron radiation in Myers-Pospelov effective electrodynamics , 2004, hep-ph/0410143.

[92]  S. Carroll,et al.  Noncommutative field theory and Lorentz violation. , 2001, Physical review letters.

[93]  Field,et al.  Limits on a Lorentz- and parity-violating modification of electrodynamics. , 1990, Physical review. D, Particles and fields.

[94]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[95]  George F.R. Ellis,et al.  c is the speed of light, isn’t it? , 2005 .

[96]  J. Ellis,et al.  Quantum-gravity analysis of gamma-ray bursts using wavelets , 2002, astro-ph/0210124.

[97]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[98]  D. Fox,et al.  Re-analysis of polarization in the γ-ray flux of GRB 021206 , 2003, astro-ph/0310385.

[99]  T. Weekes,et al.  The Spectrum of TeV Gamma Rays from the Crab Nebula , 1998 .

[100]  A. Andrianov,et al.  Lorentz and CPT violations from Chern-Simons modifications of QED , 2001, hep-th/0110279.

[101]  Varying G and Other Constants , 1997, gr-qc/9711084.

[102]  Robert C Myers,et al.  Ultraviolet modifications of dispersion relations in effective field theory. , 2003, Physical review letters.

[103]  David Mattingly,et al.  Modern Tests of Lorentz Invariance , 2005, Living reviews in relativity.

[104]  Lorentz invariance and the semiclassical approximation of loop quantum gravity , 2003, gr-qc/0310014.

[105]  A. Polyakov,et al.  The string dilation and a least coupling principle , 1994, hep-th/9401069.

[106]  β-Function in a non-covariant Yang-Mills theory , 1978 .

[107]  B. Bassett,et al.  Geometrodynamics of variable-speed-of-light cosmologies , 2000, astro-ph/0001441.