Conditional moment models with data missing at random

Summary We consider a general statistical model defined by moment restrictions when data are missing at random. Using inverse probability weighting, we show that such a model is equivalent to a model for the observed variables only, augmented by a moment condition defined by the missingness mechanism. Our framework covers parametric and semiparametric mean regressions and quantile regressions. We allow for missing responses, missing covariates and any combination of them. The equivalence result sheds new light on various aspects of missing data, and provides guidelines for building efficient estimators.

[1]  J. Wooldridge Inverse probability weighted estimation for general missing data problems , 2004 .

[2]  Arnak S. Dalalyan,et al.  A New Algorithm for Estimating the Effective Dimension-Reduction Subspace , 2008, J. Mach. Learn. Res..

[3]  Gary Chamberlain,et al.  Comment: Sequential Moment Restrictions in Panel Data , 1992 .

[4]  A. Schick,et al.  The transfer principle: A tool for complete case analysis , 2012, 1302.4605.

[5]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[6]  Raymond J Carroll,et al.  Multiple imputation in quantile regression. , 2012, Biometrika.

[7]  James M. Robins,et al.  Unified Methods for Censored Longitudinal Data and Causality , 2003 .

[8]  J. Robins,et al.  Improved double-robust estimation in missing data and causal inference models. , 2012, Biometrika.

[9]  R D Gill,et al.  Non-response models for the analysis of non-monotone ignorable missing data. , 1997, Statistics in medicine.

[10]  W. Härdle,et al.  An Extended Single‐index Model with Missing Response at Random , 2016 .

[11]  W. Härdle,et al.  An Extended Single-index Model with Missing Response at Random , 2016 .

[12]  M. Davidian,et al.  Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data , 2009, Biometrika.

[13]  Bryan S. Graham,et al.  Efficiency Bounds for Missing Data Models with Semiparametric Restrictions , 2008 .

[14]  James M. Robins,et al.  Semiparametric Regression for Repeated Outcomes With Nonignorable Nonresponse , 1998 .

[15]  U. Müller Estimating linear functionals in nonlinear regression with responses missing at random , 2009 .

[16]  Oliver Linton,et al.  Semiparametric Regression Analysis With Missing Response at Random , 2003 .

[17]  Chunrong Ai,et al.  Semiparametric Efficiency Bound for Models of Sequential Moment Restrictions Containing Unknown Functions , 2009 .

[18]  Junshan Shen,et al.  Estimation of single index model with missing response at random , 2010 .

[19]  Ursula U. Muller Estimating linear functionals in nonlinear regression with responses missing at random , 2009, 0908.3102.

[20]  Philip E. Cheng,et al.  Nonparametric Estimation of Mean Functionals with Data Missing at Random , 1994 .

[21]  Qihua Wang Statistical estimation in partial linear models with covariate data missing at random , 2009 .

[22]  Xiaohong Chen,et al.  Semiparametric efficiency in GMM models with auxiliary data , 2007, 0705.0069.

[23]  ARROLL,et al.  Estimation in Partially Linear Models With Missing Covariates , 2004 .

[24]  Zhihua Sun,et al.  Estimation in partially linear models with missing responses at random , 2007 .

[25]  Qihua Wang,et al.  Partially linear single-index model with missing responses at random , 2011 .

[26]  J. Polzehl,et al.  Structure adaptive approach for dimension reduction , 2001 .

[27]  Yiping Yang,et al.  Empirical likelihood for a partially linear model with covariate data missing at random , 2009 .

[28]  Song Xi Chen,et al.  Estimation in semiparametric models with missing data , 2012 .

[29]  M. Hristache,et al.  SEMIPARAMETRIC EFFICIENCY BOUNDS FOR CONDITIONAL MOMENT RESTRICTION MODELS WITH DIFFERENT CONDITIONING VARIABLES , 2016, Econometric Theory.

[30]  Liugen Xue,et al.  Estimation and empirical likelihood for single-index models with missing data in the covariates , 2013, Comput. Stat. Data Anal..

[31]  A. Tsiatis Semiparametric Theory and Missing Data , 2006 .

[32]  Hua Liang,et al.  Generalized Partially Linear Models With Missing Covariates. , 2008, Journal of multivariate analysis.

[33]  P. Schmidt,et al.  GMM redundancy results for general missing data problems , 2009 .