Statistical techniques for edge detection in histological images

A review of the statistical techniques available for performing edge detection on histological images is presented. The tests under review include the Student's T Test, the Fisher test, the Chi Square test, the Kolmogorov Smirnov test, and the Mann Whitney U test. All utilize a novel two sample edge detector to compare the statistical properties of two image regions surrounding a central pixel. The performance of the statistical tests is compared using histological biomedical images on which traditional gradient based techniques are not as successful, therefore giving an overall review of the methods, and results. Comparisons are also made to the more traditional Canny and Sobel, edge detection filters. The results show that in the presence of noise and clutter in histological images both parametric and non-parametric statistical tests compare well robustly extracting edge information on a series images.

[1]  Peter de Souza,et al.  Edge detection using sliding statistical tests , 1983, Comput. Vis. Graph. Image Process..

[2]  Geoffrey Edwards,et al.  On nonparametric edge detection in multilook SAR images , 1998, IEEE Trans. Geosci. Remote. Sens..

[3]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Jun S. Huang,et al.  Statistical theory of edge detection , 1988, Comput. Vis. Graph. Image Process..

[5]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[6]  Amlan Kundu Robust edge detection , 1990, Pattern Recognit..

[7]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Dong Hoon Lim,et al.  Robust edge detection in noisy images , 2006, Comput. Stat. Data Anal..

[9]  S. J. Jang,et al.  Comparison of two‐sample tests for edge detection in noisy images , 2002 .

[10]  Thomas S. Huang,et al.  Nonparametric tests for edge detection in noise , 1986, Pattern Recognit..

[11]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[12]  E Guest,et al.  A three-dimensional model of the mouse at embryonic day 9. , 1999, Developmental biology.

[13]  M. Fesharaki,et al.  A new edge detection algorithm based on a statistical approach , 1994, Proceedings of ICSIPNN '94. International Conference on Speech, Image Processing and Neural Networks.