Zn2TiO4:Eu(3+) nanophosphor: self explosive route and its near UV excited photoluminescence properties for WLEDs.
暂无分享,去创建一个
H. Nagabhushana | H. P. Nagaswarupa | H. B. Premkumar | S.C. Prashantha | H. Nagabhushana | S. Prashantha | B. Nagabhushana | R. Naik | B.M. Nagabhushana | K.M. Girish | Ramachandra Naik | H.P. Nagaswarupa | K.S. Anantha Raju | H.B. Premkumar | S.C. Sharma | K. Girish | K. S. Anantha Raju | S. Sharma | S.C. Sharma | S. C. Sharma | K M Girish | S C Prashantha | K S Anantha Raju | H B Premkumar | S C Sharma | B M Nagabhushana | H. Premkumar
[1] S. Omanwar,et al. Luminescence properties of red emitting phosphor NaSrBO3:Eu3+ prepared with novel combustion synthesis method , 2013 .
[2] Shengming Zhou,et al. Sol–gel combustion synthesis and luminescent properties of nanocrystalline YAG:Eu3+ phosphors , 2005 .
[3] Yuying Hao,et al. Luminescent properties of R+ doped Sr2SiO4:Eu3+(R+=Li+, Na+ and K+) red-emitting phosphors for white LEDs , 2011 .
[4] H. P. Nagaswarupa,et al. Synthesis, structural and luminescence studies of magnesium oxide nanopowder. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[5] Andrew P. Monkman,et al. Measurements of Solid‐State Photoluminescence Quantum Yields of Films Using a Fluorimeter , 2002 .
[6] S. C. Sharma,et al. Eco-friendly green synthesis, structural and photoluminescent studies of CeO2:Eu3+ nanophosphors using E. tirucalli plant latex , 2014 .
[7] W. Y. Wang,et al. Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2 , 2004 .
[8] H. B. Premkumar,et al. Investigation of structural and luminescence properties of Ho(3+) doped YAlO3 nanophosphors synthesized through solution combustion route. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[9] H. P. Nagaswarupa,et al. Structural, photo and thermoluminescence studies of Eu3+ doped orthorhombic YAlO3 nanophosphors , 2014 .
[10] I. Kennedy,et al. Photoluminescence of Eu3+:Y2O3 as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis , 2006 .
[11] D. Rase,et al. Phase Equilibria in the System ZnO—TiO2 , 1960 .
[12] F. Pinzari,et al. Methanol reforming reactions over Zn/TiO2 catalysts , 2006 .
[13] Dapeng Xu,et al. Large-size and high-quality Zn2TiO4 single crystal grown by the optical floating zone method , 2010 .
[14] Shinhoo Kang,et al. Studies in crystal structure and luminescence properties of Eu3+-doped metal tungstate phosphors for white LEDs , 2011 .
[15] B. Judd,et al. OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .
[16] L. G. Uitert. Characterization of Energy Transfer Interactions between Rare Earth Ions , 1967 .
[17] G. S. Ofelt. Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .
[18] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[19] M. Massaro,et al. Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica , 2008 .
[20] H. B. Premkumar,et al. YAlO3:Cr3+ nanophosphor: synthesis, photoluminescence, EPR, dosimetric studies. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[21] S. C. Sharma,et al. Hydrothermal synthesis of Gd2O3:Eu3+ nanophosphors: Effect of surfactant on structural and luminescence properties , 2014 .
[22] G. Yi,et al. Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis , 2007 .
[23] X. Chen,et al. Structure and photoluminescence study of porous red-emitting MgAl2O4:Eu3+ phosphor , 2009 .
[24] V. Sudarsan,et al. Probing of surface Eu3+ ions present in ZnO:Eu nanoparticles by covering ZnO:Eu core with Y2O3 shell : Luminescence study , 2008 .
[25] H. Nagabhushana,et al. Effect of different fuels on structural, photo and thermo luminescence properties of solution combustion prepared Y(2)SiO(5) nanopowders. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[26] Kazuki Yoshida,et al. Photoluminescence properties of Eu-doped ZnO films grown by sputtering-assisted metalorganic chemical vapor deposition , 2010 .
[27] D. M. Jnaneshwara,et al. Role of Cu2+ ions substitution in magnetic and conductivity behavior of nano-CoFe2O4. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[28] A. C. Chaves,et al. Photoluminescence in disordered Zn2TiO4 , 2006 .
[29] J. Mrázek,et al. Crystallization properties of RE-doped (RE = Eu, Er, Tm) Zn2TiO4 prepared by the sol–gel method , 2011 .
[30] B. D. Raju,et al. A study of the luminescence in near UV-pumped red-emitting novel Eu3+-doped Ba3Ca3(PO4)4 phosphors for white light emitting diodes , 2012 .
[31] S K Gupta,et al. NH3 gas sensing properties of nanocrystalline ZnO based thick films. , 2006, Analytica chimica acta.
[32] G. Blasse,et al. A NEW PHOSPHOR FOR FLYING‐SPOT CATHODE‐RAY TUBES FOR COLOR TELEVISION: YELLOW‐EMITTING Y3Al5O12–Ce3+ , 1967 .
[33] Olivier Tillement,et al. Synthesis and characterization of Gd2O3:Eu3+ phosphor nanoparticles by a sol-lyophilization technique , 2003 .
[34] S. C. Sharma,et al. Particle size, morphology and color tunable ZnO:Eu3+ nanophosphors via plant latex mediated green combustion synthesis , 2014 .
[35] D. Bhattacharyya,et al. Evolution of ZnO nanostructures in sol–gel synthesis , 2009 .
[36] Richard H. Friend,et al. An improved experimental determination of external photoluminescence quantum efficiency , 1997 .
[37] Janos D. Schanda,et al. Correlated Color‐Temperature Calculations in the CIE 1976 Chromaticity Diagram , 1977 .
[38] H. Su,et al. Studies on the (Mg,Zn)TiO3-CaTiO3 microwave dielectric ceramics , 2005 .
[39] Sean Wu,et al. The structure and properties of zinc titanate doped with strontium , 2003 .
[40] Remo Guidieri. Res , 1995, RES: Anthropology and Aesthetics.
[41] D. Fray,et al. Low temperature nanostructured zinc titanate by an aqueous particulate sol–gel route: Optimisation of heat treatment condition based on Zn:Ti molar ratio , 2010 .
[42] D. M. Jnaneshwara,et al. Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices , 2014 .
[43] R. C. Peterson,et al. Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data , 1995 .
[44] Ka-Young Park,et al. Effect of TiO2 on high-temperature thermoelectric properties of ZnO , 2007 .
[45] J. Verhoeven,et al. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes , 2002 .
[46] S. V. Mahajan,et al. Optical studies of sub-3 nm Eu2O3 and Gd2O3:Eu3+ nanocrystals , 2009 .
[47] Andrew G. Glen,et al. APPL , 2001 .
[48] H. P. Nagaswarupa,et al. Low temperature synthesis and photoluminescence properties of red emitting Mg2SiO4:Eu3+ nanophosphor for near UV light emitting diodes , 2014 .
[49] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[50] H. Nagabhushana,et al. Effect of Li+-ion on enhancement of photoluminescence in Gd2O3:Eu3+ nanophosphors prepared by combustion technique , 2011 .
[51] D. Chung,et al. Microwave-induced combustion synthesis of Ce1−xSmxO2−x/2 powder and its characterization , 2004 .
[52] G. K. Williamson,et al. X-ray line broadening from filed aluminium and wolfram , 1953 .
[53] S. C. Sharma,et al. Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1–10 mol%) phosphors , 2014 .
[54] S. C. Sharma,et al. Luminescent characteristics of Eu3+ doped di-calcium silicate nano-powders for white LEDs , 2013 .
[55] Pengfei Liu,et al. Synthesis and luminescence properties of a novel red Sr3Bi(PO4)3:Sm3+ phosphor , 2012 .
[56] H. Ogawa,et al. Synthesis and Microwave Dielectric Properties of MgO-xmol%B2O3 (x = 33 and 25) Ceramics in MgO-B2O3 System , 2009 .
[57] H. P. Nagaswarupa,et al. MgO:Eu3+ red nanophosphor: low temperature synthesis and photoluminescence properties. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[58] Shweta Jagtap,et al. Evaluation of ZnO nanoparticles and study of ZnO–TiO2 composites for lead free humidity sensors , 2013 .
[59] S. Prashantha,et al. 100MeV Si8+ ion induced luminescence and thermoluminescence of nanocrystalline Mg2SiO4:Eu3+ , 2012 .
[60] Sukon Phanichphant,et al. Characterization of single phase Pt-doped Zn2TiO4 nanoparticles synthesized by flame spray pyrolysis , 2012 .
[61] S. Prashantha,et al. Photoluminescence and thermoluminescence studies of Mg2SiO4:Eu3+ nano phosphor , 2011 .
[62] T. Esaka,et al. Formation of oxide ion conductive phase in the substituted oxide system based on Zn2TiO4 , 1995 .
[63] Yunhua Xu,et al. Effect of SDS on morphology tailoring of GdVO4:Eu3+ powders under hydrothermal conditions in a wide pH range , 2014 .
[64] Hong-bin Liang,et al. Luminescence properties of a novel red emitting phosphor, Mg 2GeO 4:Sm 3+ , 2009 .
[65] H. P. Nagaswarupa,et al. MgO:Dy3 + nanophosphor: Self ignition route, characterization and its photoluminescence properties , 2014 .
[66] L. Fu,et al. Preformed sol-gel synthesis and characterization of YAlO3 , 2003 .
[67] Y. Qiao,et al. Photoluminescence properties of Sm3+ ions doped oxyfluoride calcium borosilicate glasses , 2013 .
[68] Deane B. Judd. Estimation of Chromaticity Differences and Nearest Color Temperature on the Standard 1931 ICI Colorimetric Coordinate System , 1936 .
[69] S. K. Pradhan,et al. Preparation of nanocrystalline microwave dielectric Zn2TiO4 and ZnTiO3 mixture and X-ray microstructure characterization by Rietveld method , 2006 .
[70] O. Viagin,et al. Mechanism of energy transfer in Sr2CeO4:Eu3+ phosphor , 2009 .