Zn2TiO4:Eu(3+) nanophosphor: self explosive route and its near UV excited photoluminescence properties for WLEDs.

A simple and low-cost solution combustion method was used to prepare Eu(3+) (1-11mol%) doped Zn2TiO4 nanophosphors at 500°C using zinc nitrates as precursors and oxalyl di-hydrazide (ODH) as fuel. The final product was calcined at 1100°C for 3h and then characterized by powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-visible absorption (UV-Vis). The PXRD patterns of the sample calcined at 1100°C show pure cubic phase. The crystallite size was estimated using Scherrer's method and found to be in the range 20-25nm and the same was confirmed by TEM studies. Effects of Eu(3+) (1-11mol%) cations on the luminescence properties of Zn2TiO4 nanoparticles were studied. The samples exhibit intense red emission upon 395nm near ultra violet (NUV) excitation. The characteristic emission peaks recorded at ∼578, 592, 613 and 654nm may be attributed to the 4f-4f intra shell transitions ((5)D0→(7)Fj=0,1,2,3) of Eu(3+) cations. The CIE chromaticity co-ordinates and CCT were calculated from emission spectra and the values (x, y) were very close to NTSC standard values for red emission and CCT was close to Plankian locus. Therefore, the present phosphor may be highly useful for display applications.

[1]  S. Omanwar,et al.  Luminescence properties of red emitting phosphor NaSrBO3:Eu3+ prepared with novel combustion synthesis method , 2013 .

[2]  Shengming Zhou,et al.  Sol–gel combustion synthesis and luminescent properties of nanocrystalline YAG:Eu3+ phosphors , 2005 .

[3]  Yuying Hao,et al.  Luminescent properties of R+ doped Sr2SiO4:Eu3+(R+=Li+, Na+ and K+) red-emitting phosphors for white LEDs , 2011 .

[4]  H. P. Nagaswarupa,et al.  Synthesis, structural and luminescence studies of magnesium oxide nanopowder. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[5]  Andrew P. Monkman,et al.  Measurements of Solid‐State Photoluminescence Quantum Yields of Films Using a Fluorimeter , 2002 .

[6]  S. C. Sharma,et al.  Eco-friendly green synthesis, structural and photoluminescent studies of CeO2:Eu3+ nanophosphors using E. tirucalli plant latex , 2014 .

[7]  W. Y. Wang,et al.  Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2 , 2004 .

[8]  H. B. Premkumar,et al.  Investigation of structural and luminescence properties of Ho(3+) doped YAlO3 nanophosphors synthesized through solution combustion route. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[9]  H. P. Nagaswarupa,et al.  Structural, photo and thermoluminescence studies of Eu3+ doped orthorhombic YAlO3 nanophosphors , 2014 .

[10]  I. Kennedy,et al.  Photoluminescence of Eu3+:Y2O3 as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis , 2006 .

[11]  D. Rase,et al.  Phase Equilibria in the System ZnO—TiO2 , 1960 .

[12]  F. Pinzari,et al.  Methanol reforming reactions over Zn/TiO2 catalysts , 2006 .

[13]  Dapeng Xu,et al.  Large-size and high-quality Zn2TiO4 single crystal grown by the optical floating zone method , 2010 .

[14]  Shinhoo Kang,et al.  Studies in crystal structure and luminescence properties of Eu3+-doped metal tungstate phosphors for white LEDs , 2011 .

[15]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[16]  L. G. Uitert Characterization of Energy Transfer Interactions between Rare Earth Ions , 1967 .

[17]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  M. Massaro,et al.  Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica , 2008 .

[20]  H. B. Premkumar,et al.  YAlO3:Cr3+ nanophosphor: synthesis, photoluminescence, EPR, dosimetric studies. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[21]  S. C. Sharma,et al.  Hydrothermal synthesis of Gd2O3:Eu3+ nanophosphors: Effect of surfactant on structural and luminescence properties , 2014 .

[22]  G. Yi,et al.  Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis , 2007 .

[23]  X. Chen,et al.  Structure and photoluminescence study of porous red-emitting MgAl2O4:Eu3+ phosphor , 2009 .

[24]  V. Sudarsan,et al.  Probing of surface Eu3+ ions present in ZnO:Eu nanoparticles by covering ZnO:Eu core with Y2O3 shell : Luminescence study , 2008 .

[25]  H. Nagabhushana,et al.  Effect of different fuels on structural, photo and thermo luminescence properties of solution combustion prepared Y(2)SiO(5) nanopowders. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[26]  Kazuki Yoshida,et al.  Photoluminescence properties of Eu-doped ZnO films grown by sputtering-assisted metalorganic chemical vapor deposition , 2010 .

[27]  D. M. Jnaneshwara,et al.  Role of Cu2+ ions substitution in magnetic and conductivity behavior of nano-CoFe2O4. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[28]  A. C. Chaves,et al.  Photoluminescence in disordered Zn2TiO4 , 2006 .

[29]  J. Mrázek,et al.  Crystallization properties of RE-doped (RE = Eu, Er, Tm) Zn2TiO4 prepared by the sol–gel method , 2011 .

[30]  B. D. Raju,et al.  A study of the luminescence in near UV-pumped red-emitting novel Eu3+-doped Ba3Ca3(PO4)4 phosphors for white light emitting diodes , 2012 .

[31]  S K Gupta,et al.  NH3 gas sensing properties of nanocrystalline ZnO based thick films. , 2006, Analytica chimica acta.

[32]  G. Blasse,et al.  A NEW PHOSPHOR FOR FLYING‐SPOT CATHODE‐RAY TUBES FOR COLOR TELEVISION: YELLOW‐EMITTING Y3Al5O12–Ce3+ , 1967 .

[33]  Olivier Tillement,et al.  Synthesis and characterization of Gd2O3:Eu3+ phosphor nanoparticles by a sol-lyophilization technique , 2003 .

[34]  S. C. Sharma,et al.  Particle size, morphology and color tunable ZnO:Eu3+ nanophosphors via plant latex mediated green combustion synthesis , 2014 .

[35]  D. Bhattacharyya,et al.  Evolution of ZnO nanostructures in sol–gel synthesis , 2009 .

[36]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[37]  Janos D. Schanda,et al.  Correlated Color‐Temperature Calculations in the CIE 1976 Chromaticity Diagram , 1977 .

[38]  H. Su,et al.  Studies on the (Mg,Zn)TiO3-CaTiO3 microwave dielectric ceramics , 2005 .

[39]  Sean Wu,et al.  The structure and properties of zinc titanate doped with strontium , 2003 .

[40]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[41]  D. Fray,et al.  Low temperature nanostructured zinc titanate by an aqueous particulate sol–gel route: Optimisation of heat treatment condition based on Zn:Ti molar ratio , 2010 .

[42]  D. M. Jnaneshwara,et al.  Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices , 2014 .

[43]  R. C. Peterson,et al.  Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data , 1995 .

[44]  Ka-Young Park,et al.  Effect of TiO2 on high-temperature thermoelectric properties of ZnO , 2007 .

[45]  J. Verhoeven,et al.  The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes , 2002 .

[46]  S. V. Mahajan,et al.  Optical studies of sub-3 nm Eu2O3 and Gd2O3:Eu3+ nanocrystals , 2009 .

[47]  Andrew G. Glen,et al.  APPL , 2001 .

[48]  H. P. Nagaswarupa,et al.  Low temperature synthesis and photoluminescence properties of red emitting Mg2SiO4:Eu3+ nanophosphor for near UV light emitting diodes , 2014 .

[49]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[50]  H. Nagabhushana,et al.  Effect of Li+-ion on enhancement of photoluminescence in Gd2O3:Eu3+ nanophosphors prepared by combustion technique , 2011 .

[51]  D. Chung,et al.  Microwave-induced combustion synthesis of Ce1−xSmxO2−x/2 powder and its characterization , 2004 .

[52]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .

[53]  S. C. Sharma,et al.  Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1–10 mol%) phosphors , 2014 .

[54]  S. C. Sharma,et al.  Luminescent characteristics of Eu3+ doped di-calcium silicate nano-powders for white LEDs , 2013 .

[55]  Pengfei Liu,et al.  Synthesis and luminescence properties of a novel red Sr3Bi(PO4)3:Sm3+ phosphor , 2012 .

[56]  H. Ogawa,et al.  Synthesis and Microwave Dielectric Properties of MgO-xmol%B2O3 (x = 33 and 25) Ceramics in MgO-B2O3 System , 2009 .

[57]  H. P. Nagaswarupa,et al.  MgO:Eu3+ red nanophosphor: low temperature synthesis and photoluminescence properties. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[58]  Shweta Jagtap,et al.  Evaluation of ZnO nanoparticles and study of ZnO–TiO2 composites for lead free humidity sensors , 2013 .

[59]  S. Prashantha,et al.  100MeV Si8+ ion induced luminescence and thermoluminescence of nanocrystalline Mg2SiO4:Eu3+ , 2012 .

[60]  Sukon Phanichphant,et al.  Characterization of single phase Pt-doped Zn2TiO4 nanoparticles synthesized by flame spray pyrolysis , 2012 .

[61]  S. Prashantha,et al.  Photoluminescence and thermoluminescence studies of Mg2SiO4:Eu3+ nano phosphor , 2011 .

[62]  T. Esaka,et al.  Formation of oxide ion conductive phase in the substituted oxide system based on Zn2TiO4 , 1995 .

[63]  Yunhua Xu,et al.  Effect of SDS on morphology tailoring of GdVO4:Eu3+ powders under hydrothermal conditions in a wide pH range , 2014 .

[64]  Hong-bin Liang,et al.  Luminescence properties of a novel red emitting phosphor, Mg 2GeO 4:Sm 3+ , 2009 .

[65]  H. P. Nagaswarupa,et al.  MgO:Dy3 + nanophosphor: Self ignition route, characterization and its photoluminescence properties , 2014 .

[66]  L. Fu,et al.  Preformed sol-gel synthesis and characterization of YAlO3 , 2003 .

[67]  Y. Qiao,et al.  Photoluminescence properties of Sm3+ ions doped oxyfluoride calcium borosilicate glasses , 2013 .

[68]  Deane B. Judd Estimation of Chromaticity Differences and Nearest Color Temperature on the Standard 1931 ICI Colorimetric Coordinate System , 1936 .

[69]  S. K. Pradhan,et al.  Preparation of nanocrystalline microwave dielectric Zn2TiO4 and ZnTiO3 mixture and X-ray microstructure characterization by Rietveld method , 2006 .

[70]  O. Viagin,et al.  Mechanism of energy transfer in Sr2CeO4:Eu3+ phosphor , 2009 .