A Rational Function Preconditioner For Indefinite Sparse Linear Systems

This paper introduces a rational function preconditioner for linear systems with indefinite sparse matrices $A$. By resorting to rational functions of $A$, the algorithm decomposes the spectrum of $A$ into two disjoint regions and approximates the restriction of $A^{-1}$ on these regions separately. We show a systematic way to construct these rational functions so that they can be applied stably and inexpensively. An attractive feature of the proposed approach is that the construction and application of the preconditioner can exploit two levels of parallelism. Moreover, the proposed preconditioner can be modified at a negligible cost into a preconditioner for a nearby matrix of the form $A-cI$, which can be useful in some applications. The efficiency and robustness of the proposed preconditioner are demonstrated on a few tests with challenging model problems, including problems arising from the Helmholtz equation in three dimensions.

[1]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[2]  Matthias Bollhöfer,et al.  A Robust and Efficient ILU that Incorporates the Growth of the Inverse Triangular Factors , 2003, SIAM J. Sci. Comput..

[3]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[4]  Ronald B. Morgan,et al.  GMRES WITH DEFLATED , 2008 .

[5]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[6]  Yousef Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..

[7]  Jianlin Xia,et al.  On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .

[8]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[9]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[10]  M. Gander,et al.  AILU for Helmholtz problems: A new Preconditioner Based on the Analytic Parabolic Factorization.∗ , 2016 .

[11]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[12]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[13]  Christian Wagner,et al.  Multilevel ILU decomposition , 1999, Numerische Mathematik.

[14]  Gene H. Golub,et al.  Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration , 1999, SIAM J. Sci. Comput..

[15]  Ping Tak Peter Tang,et al.  Zolotarev Quadrature Rules and Load Balancing for the FEAST Eigensolver , 2014, SIAM J. Sci. Comput..

[16]  I. Gustafsson A class of first order factorization methods , 1978 .

[17]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .

[18]  E. F. F. Botta,et al.  Matrix Renumbering ILU: An Effective Algebraic Multilevel ILU Preconditioner for Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[19]  Luc Giraud,et al.  Flexible GMRES with Deflated Restarting , 2010, SIAM J. Sci. Comput..

[20]  Cornelis Vuik,et al.  Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..

[21]  Yousef Saad,et al.  ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices , 1996, SIAM J. Sci. Comput..

[22]  Martin J. Gander,et al.  AILU: a preconditioner based on the analytic factorization of the elliptic operator , 2000, Numer. Linear Algebra Appl..

[23]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[24]  Lexing Ying,et al.  Recursive Sweeping Preconditioner for the 3D Helmholtz Equation , 2015 .

[25]  H. Elman A stability analysis of incomplete LU factorizations , 1986 .

[26]  Yvan Notay Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..

[27]  Y. Saad,et al.  Preconditioning Helmholtz linear systems , 2010 .

[28]  Marcus J. Grote,et al.  Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..

[29]  Yousef Saad,et al.  Divide and Conquer Low-Rank Preconditioners for Symmetric Matrices , 2013, SIAM J. Sci. Comput..

[30]  Ping Tak Peter Tang,et al.  FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..

[31]  Valeria Simoncini,et al.  Flexible Inner-Outer Krylov Subspace Methods , 2002, SIAM J. Numer. Anal..

[32]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[33]  Yousef Saad,et al.  Computing Partial Spectra with Least-Squares Rational Filters , 2016, SIAM J. Sci. Comput..

[34]  Robert Beauwens,et al.  Preconditioning of discrete Helmholtz operators perturbed by a diagonal complex matrix , 2000 .

[35]  Yousef Saad,et al.  Modification and Compensation Strategies for Threshold-based Incomplete Factorizations , 2012, SIAM J. Sci. Comput..

[36]  Yousef Saad,et al.  A Greedy Strategy for Coarse-Grid Selection , 2007, SIAM J. Sci. Comput..

[37]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[38]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[39]  C. Vuik New insights in GMRES-like methods with variable preconditioners , 1995 .

[40]  Ping Tak Peter Tang,et al.  Feast Eigensolver for Non-Hermitian Problems , 2015, SIAM J. Sci. Comput..

[41]  Nicholas J. Higham,et al.  Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..

[42]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[43]  Yousef Saad,et al.  An Algebraic Multilevel Preconditioner with Low-Rank Corrections for Sparse Symmetric Matrices , 2016, SIAM J. Matrix Anal. Appl..

[44]  Timothy A. Davis,et al.  Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.

[45]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[46]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[47]  Cornelis Vuik,et al.  Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .

[48]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[49]  Lexing Ying,et al.  Recursive Sweeping Preconditioner for the Three-Dimensional Helmholtz Equation , 2016, SIAM J. Sci. Comput..

[50]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[51]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[52]  Masha Sosonkina,et al.  pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..

[53]  K. Burrage,et al.  Restarted GMRES preconditioned by deflation , 1996 .

[54]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[55]  Yousef Saad,et al.  Multilevel Preconditioners Constructed From Inverse-Based ILUs , 2005, SIAM J. Sci. Comput..

[56]  Gene H. Golub,et al.  Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..

[57]  T. Sakurai,et al.  CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems , 2007 .

[58]  N. Higham,et al.  Computing A, log(A) and Related Matrix Functions by Contour Integrals , 2007 .

[59]  Lexing Ying,et al.  Additive Sweeping Preconditioner for the Helmholtz Equation , 2015, Multiscale Model. Simul..

[60]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[61]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[62]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .