A Rational Function Preconditioner For Indefinite Sparse Linear Systems
暂无分享,去创建一个
[1] Yousef Saad,et al. ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..
[2] Matthias Bollhöfer,et al. A Robust and Efficient ILU that Incorporates the Growth of the Inverse Triangular Factors , 2003, SIAM J. Sci. Comput..
[3] T. Sakurai,et al. A projection method for generalized eigenvalue problems using numerical integration , 2003 .
[4] Ronald B. Morgan,et al. GMRES WITH DEFLATED , 2008 .
[5] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[6] Yousef Saad,et al. Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..
[7] Jianlin Xia,et al. On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .
[8] Y. Saad. Numerical Methods for Large Eigenvalue Problems , 2011 .
[9] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[10] M. Gander,et al. AILU for Helmholtz problems: A new Preconditioner Based on the Analytic Parabolic Factorization.∗ , 2016 .
[11] Martin J. Gander,et al. Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .
[12] Yousef Saad,et al. ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..
[13] Christian Wagner,et al. Multilevel ILU decomposition , 1999, Numerische Mathematik.
[14] Gene H. Golub,et al. Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration , 1999, SIAM J. Sci. Comput..
[15] Ping Tak Peter Tang,et al. Zolotarev Quadrature Rules and Load Balancing for the FEAST Eigensolver , 2014, SIAM J. Sci. Comput..
[16] I. Gustafsson. A class of first order factorization methods , 1978 .
[17] O. Axelsson,et al. A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .
[18] E. F. F. Botta,et al. Matrix Renumbering ILU: An Effective Algebraic Multilevel ILU Preconditioner for Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..
[19] Luc Giraud,et al. Flexible GMRES with Deflated Restarting , 2010, SIAM J. Sci. Comput..
[20] Cornelis Vuik,et al. Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..
[21] Yousef Saad,et al. ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices , 1996, SIAM J. Sci. Comput..
[22] Martin J. Gander,et al. AILU: a preconditioner based on the analytic factorization of the elliptic operator , 2000, Numer. Linear Algebra Appl..
[23] Y. Saad,et al. Experimental study of ILU preconditioners for indefinite matrices , 1997 .
[24] Lexing Ying,et al. Recursive Sweeping Preconditioner for the 3D Helmholtz Equation , 2015 .
[25] H. Elman. A stability analysis of incomplete LU factorizations , 1986 .
[26] Yvan Notay. Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..
[27] Y. Saad,et al. Preconditioning Helmholtz linear systems , 2010 .
[28] Marcus J. Grote,et al. Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..
[29] Yousef Saad,et al. Divide and Conquer Low-Rank Preconditioners for Symmetric Matrices , 2013, SIAM J. Sci. Comput..
[30] Ping Tak Peter Tang,et al. FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..
[31] Valeria Simoncini,et al. Flexible Inner-Outer Krylov Subspace Methods , 2002, SIAM J. Numer. Anal..
[32] Weng Cho Chew,et al. A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .
[33] Yousef Saad,et al. Computing Partial Spectra with Least-Squares Rational Filters , 2016, SIAM J. Sci. Comput..
[34] Robert Beauwens,et al. Preconditioning of discrete Helmholtz operators perturbed by a diagonal complex matrix , 2000 .
[35] Yousef Saad,et al. Modification and Compensation Strategies for Threshold-based Incomplete Factorizations , 2012, SIAM J. Sci. Comput..
[36] Yousef Saad,et al. A Greedy Strategy for Coarse-Grid Selection , 2007, SIAM J. Sci. Comput..
[37] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[38] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[39] C. Vuik. New insights in GMRES-like methods with variable preconditioners , 1995 .
[40] Ping Tak Peter Tang,et al. Feast Eigensolver for Non-Hermitian Problems , 2015, SIAM J. Sci. Comput..
[41] Nicholas J. Higham,et al. Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..
[42] Patrick R. Amestoy,et al. An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..
[43] Yousef Saad,et al. An Algebraic Multilevel Preconditioner with Low-Rank Corrections for Sparse Symmetric Matrices , 2016, SIAM J. Matrix Anal. Appl..
[44] Timothy A. Davis,et al. Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.
[45] B. Engquist,et al. Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.
[46] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[47] Cornelis Vuik,et al. Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .
[48] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[49] Lexing Ying,et al. Recursive Sweeping Preconditioner for the Three-Dimensional Helmholtz Equation , 2016, SIAM J. Sci. Comput..
[50] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[51] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[52] Masha Sosonkina,et al. pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..
[53] K. Burrage,et al. Restarted GMRES preconditioned by deflation , 1996 .
[54] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[55] Yousef Saad,et al. Multilevel Preconditioners Constructed From Inverse-Based ILUs , 2005, SIAM J. Sci. Comput..
[56] Gene H. Golub,et al. Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..
[57] T. Sakurai,et al. CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems , 2007 .
[58] N. Higham,et al. Computing A, log(A) and Related Matrix Functions by Contour Integrals , 2007 .
[59] Lexing Ying,et al. Additive Sweeping Preconditioner for the Helmholtz Equation , 2015, Multiscale Model. Simul..
[60] Eric Polizzi,et al. A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.
[61] Lexing Ying,et al. Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..
[62] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .