A Comparative Study of the Effects of Palmitic Acid and ω-Hydroxypalmitic Acid as Inducers of Ca2+-Dependent Permeabilization of Liver Mitochondria and Lecithin Liposomes

[1]  K. Belosludtsev,et al.  Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells , 2019, Biochemistry (Moscow).

[2]  A. E. Stepanova,et al.  Membranotropic effects of ω-hydroxypalmitic acid and Ca2+ on rat liver mitochondria and lecithin liposomes. Aggregation and membrane permeabilization , 2018, Journal of Bioenergetics and Biomembranes.

[3]  A. E. Stepanova,et al.  Ca2+-dependent aggregation and permeabilization of erythrocytes by ω-hydroxypalmitic and α, ω-hexadecandioic acids , 2016 .

[4]  C. Gerle On the structural possibility of pore-forming mitochondrial FoF1 ATP synthase. , 2016, Biochimica et biophysica acta.

[5]  A. Halestrap,et al.  Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity , 2016, The Biochemical journal.

[6]  J. Lemasters,et al.  Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions. , 2015, Biochimica et biophysica acta.

[7]  A. S. Kazakov,et al.  Ca(2+)-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: a comparative study. , 2014, Biochimica et biophysica acta.

[8]  S. Sollott,et al.  Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. , 2014, Physiological reviews.

[9]  V. Giorgio,et al.  Dimers of mitochondrial ATP synthase form the permeability transition pore , 2013, Proceedings of the National Academy of Sciences.

[10]  L. Galluzzi,et al.  Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition , 2013, Cell cycle.

[11]  R. Wanders,et al.  Fatty acid omega‐oxidation as a rescue pathway for fatty acid oxidation disorders in humans , 2011, The FEBS journal.

[12]  K. Belosludtsev,et al.  Palmitic Acid Induces the Opening of a Ca2+-Dependent Pore in the Plasma Membrane of Red Blood Cells: The Possible Role of the Pore in Erythrocyte Lysis , 2010, The Journal of Membrane Biology.

[13]  P. Bernardi,et al.  Phosphate Is Essential for Inhibition of the Mitochondrial Permeability Transition Pore by Cyclosporin A and by Cyclophilin D Ablation* , 2008, Journal of Biological Chemistry.

[14]  A. Halestrap,et al.  The Mitochondrial Phosphate Carrier Interacts with Cyclophilin D and May Play a Key Role in the Permeability Transition* , 2008, Journal of Biological Chemistry.

[15]  R. Wanders,et al.  Evidence for two enzymatic pathways for ω-oxidation of docosanoic acid in rat liver microsomes Published, JLR Papers in Press, February 16, 2005. DOI 10.1194/jlr.M400510-JLR200 , 2005, Journal of Lipid Research.

[16]  A. Vinogradov,et al.  In situ assay of the intramitochondrial enzymes: use of alamethicin for permeabilization of mitochondria. , 2003, Analytical biochemistry.

[17]  K. Belosludtsev,et al.  A permeability transition in liposomes induced by the formation of Ca2+/palmitic acid complexes. , 2003, Biochimica et biophysica acta.

[18]  P. M. Sokolove,et al.  Free fatty acid effects on mitochondrial permeability: an overview. , 2001, Archives of biochemistry and biophysics.

[19]  V. N. Samartsev,et al.  Role of the ADP/ATP‐Antiporter in Fatty Acid‐Induced Uncoupling of Ca2+‐Loaded Rat Liver Mitochondria , 2000, IUBMB life.

[20]  A. V. Smirnov,et al.  Involvement of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria. , 1997, Biochimica et biophysica acta.

[21]  P. Bernardi,et al.  Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. , 1993, The Journal of biological chemistry.

[22]  P. Pedersen,et al.  Mitochondrial proton/phosphate transporter. An antibody directed against the COOH terminus and proteolytic cleavage experiments provides new insights about its membrane topology. , 1990, The Journal of biological chemistry.

[23]  A. Halestrap,et al.  Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. , 1990, The Biochemical journal.

[24]  G. Brandolin,et al.  Kinetics of Pi-Pi exchange in rat liver mitochondria. Rapid filtration experiments in the millisecond time range. , 1985, Biochemistry.