Computable symbolic dynamics

We investigate computable subshifts and the connection with effective symbolic dynamics. It is shown that a decidable Π01 class P is a subshift if and only if there exists a computable function F mapping 2ℕ to 2ℕ such that P is the set of itineraries of elements of 2ℕ. Π01 subshifts are constructed in 2ℕ and in 2ℤ which have no computable elements. We also consider the symbolic dynamics of maps on the unit interval. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[2]  Douglas Cenzer ∏10 Classes in Computability Theory , 1999, Handbook of Computability Theory.

[3]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[4]  Jean-Charles Delvenne,et al.  Decidability and Universality in Symbolic Dynamical Systems , 2004, Fundam. Informaticae.

[5]  Richard Statman,et al.  Logical Methods: In Honor of Anil Nerode's Sixtieth Birthday , 1994 .

[6]  Ker-I Ko On the Computability of Fractal Dimensions and Hausdorff Measure , 1998, Ann. Pure Appl. Log..

[7]  Mark Braverman,et al.  Computing over the Reals: Foundations for Scientific Computing , 2005, ArXiv.

[8]  Douglas A. Cenzer,et al.  Effective Symbolic Dynamics , 2008, CCA.

[9]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[10]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[11]  Douglas A. Cenzer,et al.  Effectively closed sets and graphs of computable real functions , 2002, Theor. Comput. Sci..

[12]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[13]  Hui-min Hsieh Grammatical complexity and one-dimensional dynamical systems , 1996 .

[14]  Mark Braverman,et al.  Non-computable Julia sets , 2004, ArXiv.

[15]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[16]  Jeffrey B. Remmel,et al.  Chapter 13 Π10 classes in mathematics , 1998 .

[17]  Klaus Weihrauch,et al.  The computational complexity of some julia sets , 2002, STOC '03.

[18]  Nicholas C. Metropolis,et al.  On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.

[19]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .