Electron mobility in supercritical propane as a function of density and temperature

The mobility of excess electrons in supercritical n‐ and isobutane was measured as a function of density at several temperatures. The density‐normalized mobility μN in both isomers goes through a minimum at a density below the respective critical density and the mobility is quite temperature dependent in this region, then goes through a maximum above the critical density where it is rather insensitive to temperature. The minimum in isobutane is not reproduced by the Cohen–Lekner equation with the structure factor S(K) estimated from the velocity of sound, while it is well accounted for by the model in n‐butane. This and other characteristics in the mobility behavior for n‐butane are typically those of nonspherical hydrocarbons such as ethane and propane, but are intermediate between spherical and nonspherical hydrocarbons for isobutane.

[1]  K. Nakagawa,et al.  Conduction band energy in dense propane fluid , 1982 .

[2]  K. Fueki,et al.  Electron mobilities in dense ethane gas. Application of a multiple scattering model , 1981 .

[3]  Sam S.‐S. Huang,et al.  Electron transport in gaseous and liquid argon: Effects of density and temperature , 1981 .

[4]  N. Gee,et al.  Density and temperature effects on electron mobility in gaseous, critical, and liquid ethene , 1980 .

[5]  G. Bakale,et al.  Excess electron mobility in ethane. Density, temperature, and electric field effects , 1980 .

[6]  T. F. O'Malley Multiple scattering effect on electron mobilities in dense gases , 1980 .

[7]  Y. Yamaguchi,et al.  Conduction band energy in dense ethane fluid , 1979 .

[8]  I. György,et al.  Effects of density and temperature on mobilities of electrons in vapors and liquids of pentane isomers: Molecular structure effects , 1979 .

[9]  K. Fueki,et al.  On excess electron localization in ethane clusters , 1979 .

[10]  N. Gee,et al.  Quasilocalization of extra electrons in high density methane and ethane gases , 1979 .

[11]  Morrell H. Cohen,et al.  Deformation-potential theory for the mobility of excess electrons in liquid argon , 1979 .

[12]  L. Nyikos,et al.  Reply to a Comment on ''Mobility of localized and quasifree excess electrons in liquid hydrocarbons'' , 1979 .

[13]  L. Christophorou,et al.  Ramsauer-Townsend minima in the electron-scattering cross sections of polyatomic gases: methane, ethane, propane, butane, and neopentane , 1978 .

[14]  T. Ryan,et al.  Electron mobilities and ranges in methyl substituted pentanes through the liquid and critical regions , 1978 .

[15]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[16]  N. Cipollini,et al.  Zero‐field mobility of excess electrons in dense methane gas , 1977 .

[17]  A. O. Allen,et al.  Electron mobilities in liquid tetramethylsilane at temperatures up to the critical point , 1977 .

[18]  J. Engels,et al.  The motion of excess electrons in liquid mixtures of methane and argon , 1977 .

[19]  M. Cohen Electrons in fluids: the role of disorder , 1977 .

[20]  L. Christophorou,et al.  Experimental evidence for the existence of a Ramsauer–Townsend minimum in liquid CH4 and Ar (Kr and Xe) and in gaseous C2H6 and C3H8 , 1977 .

[21]  J. Dodelet,et al.  Electron mobilities in alkanes through the liquid and critical regions , 1977 .

[22]  P. T. Eubank,et al.  PVT surface and thermodynamic properties of isopentane , 1977 .

[23]  K. Fueki,et al.  Effect of density on excess electron localization in ethane and propane , 1977 .

[24]  J. Engels,et al.  The mobility of excess electrons in compressed liquid methane , 1976 .

[25]  R. L. Russell,et al.  Solvent and temperature effects in the photoionization of tetramethyl-p-phenylenediamine , 1974 .

[26]  I. Walker,et al.  Collision cross-sections for low-energy electrons in some simple hydrocarbons , 1974 .

[27]  G. Freeman,et al.  Electron Mobilities and Ranges in Liquid C1–C3 Hydrocarbons and in Xenon: Effects of Temperature and Field Strength , 1974 .

[28]  I. Eisele,et al.  Electron drift and Hall mobility in γ‐irradiated 10M NaOH glassy alkaline ice , 1973 .

[29]  R. Street Electronic Processes in Noncrystalline Materials , 1973 .

[30]  P. Wardman,et al.  Observations on solvated electrons in aliphatic hydrocarbons at room temperature by pulse radiolysis , 1973 .

[31]  N. Klassen,et al.  Optical measurements on solvated electrons in pulse-irradiated liquid propane , 1971 .

[32]  H. T. Davis,et al.  Excess Electrons in Liquid Hydrocarbons , 1971 .

[33]  S. Rice,et al.  Zero-Field Mobility of an Excess Electron in Fluid Argon , 1971 .

[34]  J. Lekner Mobility maxima in the rare-gas liquids , 1968 .

[35]  J. Lekner,et al.  Theory of hot electrons in gases, liquids, and solids , 1967 .

[36]  John Lekner,et al.  Motion of Electrons in Liquid Argon , 1967 .

[37]  J. Ziman Principles of the Theory of Solids , 1965 .

[38]  P. A. Egelstaff Thermal Neutron Scattering , 1965 .

[39]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .

[40]  C. Füchtbauer,et al.  Störung hoher Caesiumterme durch Grenzkohlenwasserstoffe und Messungen am Dublett 1s-3p der Kaliumhauptserie , 1935 .