Antiproliferative Effect and Apoptotic Mechanism of Extract of Corydalis Yanhusuo on Human Hepatocarcinoma Cells

암세포란 세포의 증식과 암의 발생 측면에서 세포주기 조절 의 교란에 의해 비정상적인 세포주기 반복을 통한 증식이 계속 되는 것이라고 할 수 있다. 따라서 세포주기와 연관된 특정 유전 자의 발현 조절을 통한 apoptosis 유발 기전의 해석은 암을 포함 한 특정 약제의 개발에 매우 중요한 의의를 가질 수 있다. 특히 apoptosis에는 세포질 및 염색질 응축, 세포막 수포화 현상, DNA 단편화 등이 수반되는데 이러한 현상은 세포내부의 정교 한 신호전달에 의해 조절된다. 또한 apoptosis는 개체보존수준 에서 손상된 세포들의 제거를 위한 중요한 수단이며, 정상적인 세포주기의 이탈이나 특정 세포주기 조절인자 활성의 변화가 apoptosis의 주원인이 될 수 있다. 현호색은 양귀비과에 속하며 理氣止痛活血하는 약리작용이 있어서 肝鬱经气滞와 血瘀로 인한 胸胁痛과 脘腹疼痛 등의 진통 효과를 목적으로 사용되었다. 현대의 약리연구에 의하면 진통 작용이 가장 강하며 주요 성분은 corydaline과 tetra hydropalmetine이고 동물실험에서 여러 모델의 궤양생성을 억 제하고 부신피질호르몬의 분비를 억제한다고 한다. 실험적으로 는 국내에서 간손상 보호효과와 관절염에 관한 연구 및 항알 러지효능과 항염증작용 등에 대한 연구가 있고, 최근에는 기억 기능이라든가 뇌에서의 글루탐산 레벨의 조절 등 뇌신경기능 방면의 연구가 있다. 따라서 癌性痛症에도 사용되는 현호색의 작 玄胡索이 인체간암세포 증식억제 및 apoptosis 유발에 미치는 영향

[1]  K. Hensley,et al.  Mitochondrial dysfunction in choline deficiency-induced apoptosis in cultured rat hepatocytes. , 2005, Free radical biology & medicine.

[2]  S. Yang,et al.  Regulation of glutamate level in rat brain through activation of glutamate dehydrogenase by Corydalis ternata , 2005, Experimental & Molecular Medicine.

[3]  S. Fulda,et al.  Exploiting death receptor signaling pathways for tumor therapy. , 2004, Biochimica et biophysica acta.

[4]  Y. Shoyama,et al.  Effects of Corydalis yanhusuo and Angelicae dahuricae on Cold Pressor‐Induced Pain in Humans: A Controlled Trial , 2004, Journal of clinical pharmacology.

[5]  M. Sheikh,et al.  Death receptors as targets of cancer therapeutics. , 2004, Current cancer drug targets.

[6]  M. Lenardo,et al.  The death effector domain protein family: regulators of cellular homeostasis , 2003, Nature Immunology.

[7]  J. Myklebust,et al.  Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. , 2002, Experimental hematology.

[8]  Michael Fraser,et al.  Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. , 2002, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[9]  H. Vainio Is COX‐2 inhibition a panacea for cancer prevention? , 2001, International journal of cancer.

[10]  K. Giercksky,et al.  COX-2 inhibition and prevention of cancer. , 2001, Best practice & research. Clinical gastroenterology.

[11]  R. Korneluk,et al.  XIAP: Apoptotic brake and promising therapeutic target , 2001, Apoptosis.

[12]  T. Tollefsbol,et al.  Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). , 2001, Gene.

[13]  Y. Sasaki,et al.  Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. , 1999, Laboratory investigation; a journal of technical methods and pathology.

[14]  D. Lawrence,et al.  Safety and antitumor activity of recombinant soluble Apo2 ligand. , 1999, The Journal of clinical investigation.

[15]  K. Fukuda Apoptosis-associated cleavage of beta-catenin in human colon cancer and rat hepatoma cells. , 1999, The international journal of biochemistry & cell biology.

[16]  V. Dixit,et al.  Death receptors: signaling and modulation. , 1998, Science.

[17]  D. Ferrari,et al.  Apoptosis signaling by death receptors. , 1998, European journal of biochemistry.

[18]  M. Cluck,et al.  Mechanisms controlling cellular suicide: role of Bcl-2 and caspases , 1998, Cellular and Molecular Life Sciences CMLS.

[19]  C. Borner,et al.  Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c , 1998, Nature.

[20]  D. Noh,et al.  Overexpression of phospholipase C-gamma1 in rat 3Y1 fibroblast cells leads to malignant transformation. , 1997, Cancer research.

[21]  T. Davison,et al.  ATM‐dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post‐translational activation of p53 protein involving poly(ADP‐ribose) polymerase , 1997, The EMBO journal.

[22]  C A Smith,et al.  Identification and characterization of a new member of the TNF family that induces apoptosis. , 1995, Immunity.

[23]  Xiao-Fan Wang,et al.  Functional Analysis of the Transforming Growth Factor βResponsive Elements in the WAF1/Cip1/p21 Promoter (*) , 1995, The Journal of Biological Chemistry.

[24]  C. Franceschi,et al.  Mitochondrial mass and membrane potential in coelomocytes from the earthworm Eisenia foetida: studies with fluorescent probes in single intact cells. , 1995, Biochemical and biophysical research communications.

[25]  David O. Morgan,et al.  Principles of CDK regulation , 1995, Nature.

[26]  S. Elledge,et al.  Cdk inhibitors: on the threshold of checkpoints and development. , 1994, Current opinion in cell biology.

[27]  Y. Xiong,et al.  Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. , 1994, Oncogene.

[28]  N. Davidson,et al.  Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. , 1993, Cancer research.

[29]  P. Krammer,et al.  Activation interferes with the APO-1 pathway in mature human T cells. , 1993, International immunology.

[30]  F. Végran,et al.  [Implication of alternative splice transcripts of caspase-3 and survivin in chemoresistance]. , 2005, Bulletin du cancer.

[31]  Judith P. Johnson Cell Adhesion Molecules in the Development and Progression of Malignant Melanoma , 2004, Cancer and Metastasis Reviews.

[32]  G. Evan,et al.  Apoptosis and the cell cycle. , 1995, Current opinion in cell biology.

[33]  K O'Rourke,et al.  Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. , 1995, Cell.