Scalable and space-efficient Robust Matroid Center algorithms

[1]  Mark de Berg,et al.  k-Center Clustering with Outliers in the Sliding-Window Model , 2021, ESA.

[2]  Sagar Kale,et al.  How to Solve Fair k-Center in Massive Data Models , 2020, ICML.

[3]  Geppino Pucci,et al.  Coreset-based Strategies for Robust Center-type Problems , 2020, ArXiv.

[4]  Geppino Pucci,et al.  A General Coreset-Based Approach to Diversity Maximization under Matroid Constraints , 2020, ACM Trans. Knowl. Discov. Data.

[5]  Ali Bakhthemmat,et al.  Decreasing the execution time of reducers by revising clustering based on the futuristic greedy approach , 2020, Journal of Big Data.

[6]  Martin Aumüller,et al.  The Role of Local Intrinsic Dimensionality in Benchmarking Nearest Neighbor Search , 2019, SISAP.

[7]  Geppino Pucci,et al.  Accurate MapReduce Algorithms for $k$-median and $k$-means in General Metric Spaces , 2019, ISAAC.

[8]  Hu Ding,et al.  Greedy Strategy Works for k-Center Clustering with Outliers and Coreset Construction , 2019, ESA.

[9]  Pranjal Awasthi,et al.  Fair k-Center Clustering for Data Summarization , 2019, ICML.

[10]  Sagar Kale,et al.  Small Space Stream Summary for Matroid Center , 2018, APPROX-RANDOM.

[11]  Deeparnab Chakrabarty,et al.  Generalized Center Problems with Outliers , 2018, ICALP.

[12]  Geppino Pucci,et al.  Solving k-center Clustering (with Outliers) in MapReduce and Streaming, almost as Accurately as Sequentially , 2018, Proc. VLDB Endow..

[13]  Geppino Pucci,et al.  Fast Coreset-based Diversity Maximization under Matroid Constraints , 2018, WSDM.

[14]  P. C. Reddy,et al.  Clustering large datasets using K-means modified inter and intra clustering (KM-I2C) in Hadoop , 2017, Journal of Big Data.

[15]  Aravind Srinivasan,et al.  A Lottery Model for Center-Type Problems With Outliers , 2017, APPROX-RANDOM.

[16]  Geppino Pucci,et al.  Clustering Uncertain Graphs , 2016, Proc. VLDB Endow..

[17]  Martín Abadi,et al.  Incremental, iterative data processing with timely dataflow , 2016, Commun. ACM.

[18]  Eli Upfal,et al.  MapReduce and Streaming Algorithms for Diversity Maximization in Metric Spaces of Bounded Doubling Dimension , 2016, Proc. VLDB Endow..

[19]  Rasmus Pagh,et al.  High-dimensional Spherical Range Reporting by Output-Sensitive Multi-Probing LSH , 2016, ArXiv.

[20]  Gustavo Malkomes,et al.  Fast Distributed k-Center Clustering with Outliers on Massive Data , 2015, NIPS.

[21]  Eli Upfal,et al.  A Practical Parallel Algorithm for Diameter Approximation of Massive Weighted Graphs , 2015, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[22]  Michael Isard,et al.  Scalability! But at what COST? , 2015, HotOS.

[23]  Din J. Wasem,et al.  Mining of Massive Datasets , 2014 .

[24]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[25]  Vahab S. Mirrokni,et al.  Composable core-sets for diversity and coverage maximization , 2014, PODS.

[26]  Lee-Ad Gottlieb,et al.  Proximity Algorithms for Nearly Doubling Spaces , 2013, SIAM J. Discret. Math..

[27]  Vahab S. Mirrokni,et al.  Diversity maximization under matroid constraints , 2013, KDD.

[28]  Paraschos Koutris,et al.  Communication steps for parallel query processing , 2013, PODS '13.

[29]  Jian Li,et al.  Matroid and Knapsack Center Problems , 2013, Algorithmica.

[30]  R. Khandekar,et al.  Local Search Algorithms for the Red-Blue Median Problem , 2012, Algorithmica.

[31]  Sanjiv Kumar,et al.  On the Difficulty of Nearest Neighbor Search , 2012, ICML.

[32]  Eli Upfal,et al.  Space-round tradeoffs for MapReduce computations , 2011, ICS '12.

[33]  Amit Kumar,et al.  The matroid median problem , 2011, SODA '11.

[34]  Samir Khuller,et al.  Streaming Algorithms for k-Center Clustering with Outliers and with Anonymity , 2008, APPROX-RANDOM.

[35]  J. Oxley Matroid Theory (Oxford Graduate Texts in Mathematics) , 2006 .

[36]  Sanjay Ghemawat,et al.  MapReduce: simplified data processing on large clusters , 2008, CACM.

[37]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[38]  Piotr Indyk,et al.  Approximate clustering via core-sets , 2002, STOC '02.

[39]  Samir Khuller,et al.  Algorithms for facility location problems with outliers , 2001, SODA '01.

[40]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[41]  Prabhakar Raghavan,et al.  Computing on data streams , 1999, External Memory Algorithms.

[42]  Rajeev Motwani,et al.  Incremental clustering and dynamic information retrieval , 1997, STOC '97.

[43]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[44]  Martin Aumüller,et al.  Running Experiments with Confidence and Sanity , 2020, SISAP.

[45]  Maria-Florina Balcan,et al.  Center Based Clustering: A Foundational Perspective , 2014 .

[46]  Jure Leskovec,et al.  Mining of Massive Datasets, 2nd Ed , 2014 .

[47]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[48]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[49]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .