Structured Backward Error and Condition of Generalized Eigenvalue Problems

Backward errors and condition numbers are defined and evaluated for eigenvalues and eigenvectors of generalized eigenvalue problems. Both normwise and componentwise measures are used. Unstructured problems are considered first, and then the basic definitions are extended so that linear structure in the coefficient matrices (for example, Hermitian, Toeplitz, Hamiltonian, or band structure) is preserved by the perturbations.

[1]  Z. Drmač A Tangent Algorithm for Computing the Generalized Singular Value Decomposition , 1998 .

[2]  Israel Koltracht,et al.  On accurate computations of the Perron root , 1993 .

[3]  Jane Cullum,et al.  A QL Procedure for Computing the Eigenvalues of Complex Symmetric Tridiagonal Matrices , 1996, SIAM J. Matrix Anal. Appl..

[4]  J. Demmel,et al.  The strong stability of algorithms for solving symmetric linear systems , 1989 .

[5]  A. J. Geurts,et al.  A contribution to the theory of condition , 1982 .

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  Sven G. Bartels,et al.  The structured sensitivity of Vandermonde-like systems , 1992 .

[8]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[9]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  Valérie Frayssé,et al.  A note on the normwise perturbation theory for the regular generalized eigenproblem , 1998, Numer. Linear Algebra Appl..

[12]  Françoise Chaitin-Chatelin,et al.  Lectures on finite precision computations , 1996, Software, environments, tools.

[13]  G. Stewart Perturbation Theory for the Generalized Eigenvalue Problem , 1978 .

[14]  Nicholas J. Higham,et al.  Backward Error and Condition of Structured Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[15]  Gene H. Golub,et al.  Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms , 1991, NATO ASI Series.

[16]  A. S. Deif Realistic a Priori and a Posteriori Error Bounds for Computed Eigenvalues , 1990 .

[17]  W. Prager,et al.  Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .

[18]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[19]  N. Higham A Survey of Componentwise Perturbation Theory in Numerical Linear Algebra , 1994 .

[20]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[21]  G. Cybenko On the eigenstructure of Toeplitz matrices , 1984 .

[22]  Paul Van Dooren,et al.  Structured linear algebra problems in digital signal processing , 1991 .

[23]  F. The Asymptotic Spectra of Banded Toeplitz and Quasi-Toeplitz Matrices , .

[24]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[25]  J. L. Rigal,et al.  On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.

[26]  N. Higham A Survey of Componentwise Perturbation Theory , 1994 .

[27]  S. Hammarling,et al.  Solving the Generalized Symmetric Eigenvalue Problem , 1992 .

[28]  W. Kahan,et al.  Residual Bounds on Approximate Eigensystems of Nonnormal Matrices , 1982 .

[29]  V. Mehrmann,et al.  A new method for computing the stable invariant subspace of a real Hamiltonian matrix , 1997 .

[30]  V. Frayssé,et al.  A note on the normwise perturbation theory for the regular generalized eigenproblem , 1998 .