Quickly constructing curves of genus 4 with many points

The "defect" of a curve over a finite field is the difference between the number of rational points on the curve and the Weil-Serre bound for the curve. We present a construction for producing genus-4 double covers of genus-2 curves over finite fields such that the defect of the double cover is not much more than the defect of the genus-2 curve. We give an algorithm that uses this construction to produce genus-4 curves with small defect. Heuristically, for all sufficiently large primes and for almost all prime powers q, the algorithm is expected to produce a genus-4 curve over F_q with defect at most 4 in time q^{3/4}, up to logarithmic factors. As part of the analysis of the algorithm, we present a reinterpretation of results of Hayashida on the number of genus-2 curves whose Jacobians are isomorphic to the square of a given elliptic curve with complex multiplication by a maximal order. We show that a category of principal polarizations on the square of such an elliptic curve is equivalent to a category of right ideals in a certain quaternion order.

[1]  Everett W. Howe,et al.  Genus-2 curves and Jacobians with a given number of points , 2014, LMS J. Comput. Math..

[2]  Everett W. Howe,et al.  New methods for bounding the number of points on curves over finite fields , 2012, 1202.6308.

[3]  E. Kani Products of CM elliptic curves , 2011 .

[4]  N. Bruin,et al.  The Arithmetic of Genus Two Curves with (4,4)-Split Jacobians , 2009, Canadian Journal of Mathematics.

[5]  Jean-François Mestre Courbes de genre 3 avec S3 comme groupe d'automorphismes , 2010, 1002.4751.

[6]  Andrew V. Sutherland Computing Hilbert class polynomials with the Chinese remainder theorem , 2009, Math. Comput..

[7]  G. Lachaud,et al.  Jacobians among abelian threefolds: A formula of klein and a question of serre , 2008, 0802.4017.

[8]  Reinier Bröker,et al.  CONSTRUCTING SUPERSINGULAR ELLIPTIC CURVES , 2007 .

[9]  Enric Nart,et al.  JACOBIANS IN ISOGENY CLASSES OF ABELIAN SURFACES OVER FINITE FIELDS , 2006, math/0607515.

[10]  Josep González,et al.  Abelian surfaces of GL₂-type as Jacobians of curves , 2004, math/0409352.

[11]  Pilar Bayer,et al.  Quaternion Orders, Quadratic Forms, and Shimura Curves , 2004 .

[12]  J. Serre Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini , 2003 .

[13]  Kristin E. Lauter,et al.  Improved upper bounds for the number of points on curves over finite fields , 2002, math/0207101.

[14]  Mireille Fouquet,et al.  Isogeny Volcanoes and the SEA Algorithm , 2002, ANTS.

[15]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[16]  Everett W. Howe,et al.  Large torsion subgroups of split Jacobians of curves of genus two or three , 1998, math/9809210.

[17]  D. Kohel Endomorphism rings of elliptic curves over finite fields , 1996 .

[18]  Everett W. Howe Principally polarized ordinary abelian varieties over finite fields , 1995 .

[19]  Masanobu Kaneko,et al.  Supersingular j-invariants as singular moduli mod p , 1989 .

[20]  K. Ribet Bimodules and Abelian Surfaces , 1989 .

[21]  René Schoof,et al.  Nonsingular plane cubic curves over finite fields , 1987, J. Comb. Theory A.

[22]  A. Weil Sur les fonctions algébriques à corps de constantes fini , 1979 .

[23]  P. J. Weinberger,et al.  Exponents of the class groups of complex quadratic fields , 1973 .

[24]  P. Deligne,et al.  Variétés abéliennes ordinaires sur un corps fini , 1969 .

[25]  W. Waterhouse,et al.  Abelian varieties over finite fields , 1969 .

[26]  Tsuyoshi Hayashida,et al.  A class number associated with the product of an elliptic curve with itself , 1968 .

[27]  Tsuyoshi Hayashida,et al.  Existence of curves of genus two on a product of two elliptic curves , 1965 .

[28]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[29]  M. Deuring Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .

[30]  J. E. Littlewood,et al.  On the Class-Number of the Corpus P(√−k) , 1928 .