The Quadratic Assignment Problem with a Monotone Anti-Monge and a Symmetric Toeplitz Matrix: Easy and Hard Cases

The Anti-Monge-Toeplitz QAP (AMT-QAP) is a restricted version of the Quadratic Assignment Problem (QAP), with a monotone Anti-Monge matrix and a symmetric Toeplitz matrix. The following problems can be modeled via the AMT-QAP: (P1) The “Turbine Problem”, i. e. the assignment of given masses to the vertices of a regular polygon such that the distance of the gravity center of the resulting system to the polygon's center is minimized. (P2) The Traveling Salesman Problem on symmetric Monge matrices. (P3) The linear arrangement of records with given access probabilities in order to minimize the average access time.

[1]  F. Supnick,et al.  Extreme Hamiltonian Lines , 1957 .

[2]  G. H. Hardy,et al.  The Maximum of a Certain Bilinear Form , 1926 .

[3]  Jack W. Mosevich,et al.  Balancing hydraulic turbine runners--A discrete combinatorial optimization problem , 1986 .

[4]  Gilbert Laporte,et al.  Balancing hydraulic turbine runners: A quadratic assignment problem , 1988 .

[5]  John H. Vande Vate,et al.  Balanced Loading , 1992, Oper. Res..

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Gerhard J. Woeginger,et al.  A Note on the Maximum of a certain Bilinear Form , 1994 .

[8]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..

[9]  Bhaba R. Sarker,et al.  Discrete location theory , 1991 .

[10]  Vaughan R. Pratt,et al.  An n log n Algorithm to Distribute n Records Optimally in a Sequential Access File , 1972, Complexity of Computer Computations.

[11]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[12]  L. Goddard,et al.  Operations Research (OR) , 2007 .

[13]  Panos M. Pardalos,et al.  The Quadratic Assignment Problem: A Survey and Recent Developments , 1993, Quadratic Assignment and Related Problems.

[14]  Gerhard J. Woeginger,et al.  Optimierung Und Kontrolle Projektbereich Diskrete Optimierung the Quadratic Assignment Problem with an Anti-monge Matrix and a Toeplitz Matrix: Easy and Hard Cases the Quadratic Assignment Problem with an Anti-monge and a Toeplitz Matrix: Easy and Hard Cases , 1995 .

[15]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[16]  E. Lawler THE QUADRATIC ASSIGNMENT PROBLEM: A BRIEF REVIEw* , 1995 .

[17]  Jens Clausen,et al.  Solving Large Quadratic Assignment Problems in Parallel , 1997, Comput. Optim. Appl..

[18]  Dieter Schlegel Die Unwucht-optimale Verteilung von Turbinenschaufeln als quadratisches Zuordnungsproblem , 1987 .

[19]  P. Strevens Iii , 1985 .