Determinants that govern high-affinity calcium binding.

[1]  R. Kretsinger,et al.  Carp muscle calcium-binding protein. II. Structure determination and general description. , 1973, The Journal of biological chemistry.

[2]  J. Moult,et al.  Troponin-C mutants with increased calcium affinity. , 1993, European journal of biochemistry.

[3]  M. James,et al.  Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. , 1988, Journal of molecular biology.

[4]  A. Tulinsky,et al.  The calcium ion and membrane binding structure of the Gla domain of calcium-prothrombin fragment 1 , 1992 .

[5]  B. Levine,et al.  Chapter 1 – Calcium Binding to Proteins and Other Large Biological Anion Centers , 1982 .

[6]  J. Smith,et al.  Calcium-ion binding by the potential calcium-ion-binding protein, p9Ka. , 1990, Biochemical and biophysical research communications.

[7]  I. Schlichting,et al.  Structure of the regulatory domain of scallop myosin at 2.8 Ä resolution , 1994, Nature.

[8]  S. Inouye,et al.  Characterization of calcium-binding sites in development-specific protein S of Myxococcus xanthus using site-specific mutagenesis. , 1988, The Journal of biological chemistry.

[9]  C. Bugg,et al.  Structure of calmodulin refined at 2.2 A resolution. , 1988, Journal of molecular biology.

[10]  R. Kretsinger Calcium coordination and the calmodulin fold: divergent versus convergent evolution. , 1987, Cold Spring Harbor symposia on quantitative biology.

[11]  C. Chung The entropy effect of chelation , 1979 .

[12]  W. Bode,et al.  The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. , 1975, Journal of molecular biology.

[13]  I. D. Campbell,et al.  Key residues involved in calcium-binding motifs in EGF-like domains , 1991, Nature.

[14]  R. J. Williams Calcium and calmodulin. , 1992, Cell calcium.

[15]  A. Martell The Chelate Effect , 1967 .

[16]  J. Cox,et al.  Characterization of the human calmodulin-like protein expressed in Escherichia coli. , 1992, Biochemistry.

[17]  J. Cox,et al.  Calcium- and magnesium-binding properties of oncomodulin. Direct binding studies and microcalorimetry. , 1990, The Journal of biological chemistry.

[18]  W. Hol,et al.  Structure of bovine pancreatic phospholipase A2 at 1.7A resolution. , 1981, Journal of molecular biology.

[19]  J. Bieth,et al.  Location of the calcium ion binding site in porcine pancreatic elastase using a lanthanide ion probe. , 1977, Biochemistry.

[20]  G. Anderegg,et al.  Komplexone XXV. Die polarographische Untersuchung von Austauschgleichgewichten. Neue Daten der Bildungskonstanten von Metallkomplexen der Äthylendiamin-tetraessigsäure und der 1,2-Diaminocyclohexan-tetraessigsäure , 1954 .

[21]  J. Moult,et al.  Probing the calcium-induced conformational transition of troponin C with site-directed mutants , 1990, Nature.

[22]  M. Tanokura,et al.  Steady-state properties of calcium binding to parvalbumins from bullfrog skeletal muscle: effects of Mg2+, pH, ionic strength, and temperature. , 1986, Journal of biochemistry.

[23]  S. Forsén,et al.  Proline cis-trans isomers in calbindin D9k observed by X-ray crystallography. , 1992, Journal of Molecular Biology.

[24]  Walter J. Chazin,et al.  High-resolution Solution Structure of Calcium-loaded Calbindin D9k , 1993 .

[25]  J. Baudier,et al.  Ions binding to S100 proteins. I. Calcium- and zinc-binding properties of bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) protein: Zn2+ regulates Ca2+ binding on S100b protein. , 1986, The Journal of biological chemistry.

[26]  Walter J. Chazin,et al.  High-resolution structure of calcium-loaded calbindin D9k. , 1993, Journal of molecular biology.

[27]  A. D. de Vos,et al.  The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. , 1994, Biochemistry.

[28]  T. Drakenberg,et al.  Three-dimensional structure of the apo form of the N-terminal EGF-like module of blood coagulation factor X as determined by NMR spectroscopy and simulated folding. , 1992, Biochemistry.

[29]  Jian-Hua Luo,et al.  Calcium-dependent activation of protein kinase C. The role of the C2 domain in divalent cation selectivity. , 1993, The Journal of biological chemistry.

[30]  C. Frömmel,et al.  Influence of calcium binding on the thermal stability of 'thermitase', a serine protease from Thermoactinomyces vulgaris. , 1981, Biochimica et biophysica acta.

[31]  D. Storm,et al.  Calcium binding to complexes of calmodulin and calmodulin binding proteins. , 1985, Biochemistry.

[32]  Binding of Ca2+ to calmodulin and its tryptic fragments: theory and experiment. , 1993, Biochemistry.

[33]  M. Matsushima,et al.  Crystal structures of the apo- and holomutant human lysozymes with an introduced Ca2+ binding site. , 1992, The Journal of biological chemistry.

[34]  S. Linse,et al.  Ca2+ binding to calbindin D9k strongly affects backbone dynamics: measurements of exchange rates of individual amide protons using 1H NMR. , 1990, Biochemistry.

[35]  M. Akke,et al.  Signal transduction versus buffering activity in Ca2+–binding proteins , 1994, Nature Structural Biology.

[36]  S. Linse,et al.  Ion-binding properties of calbindin D9k: a Monte Carlo simulation study. , 1991, Biochemistry.

[37]  T. Grundström,et al.  Electrostatic contributions to the binding of Ca2+ in calbindin D9k. , 1991, Biochemistry.

[38]  J. Putkey,et al.  Mutation of the high affinity calcium binding sites in cardiac troponin C. , 1992, The Journal of biological chemistry.

[39]  R. Hodges,et al.  Calcium-induced peptide association to form an intact protein domain: 1H NMR structural evidence. , 1990, Science.

[40]  H. Hidaka,et al.  Distinct regional localization of neurocalcin, a Ca(2+)-binding protein, in the bovine adrenal gland. , 1993, The Journal of endocrinology.

[41]  J. Lehn,et al.  Cryptates. XVI. [2]-Cryptates. Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes , 1975 .

[42]  R. Hodges,et al.  Synthetic analog of a high affinity calcium binding site in rabbit skeletal troponin C. , 1980, The Journal of biological chemistry.

[43]  T. Grundström,et al.  Mutation of the pseudo-EF-hand of calbindin D9k into a normal EF-hand. Biophysical studies. , 1991, European journal of biochemistry.

[44]  D. Storm,et al.  Determination of the free-energy coupling for binding of calcium ions and troponin I to calmodulin. , 1982, Biochemistry.

[45]  R. Hancock,et al.  Macrocycles and their selectivity for metal ions on the basis of size , 1986 .

[46]  R. Hiskey,et al.  Magnesium and calcium ion binding to bovine prothrombin fragment 1. A circular dichroism, fluorescence, and 43Ca2+ and 25Mg2+ nuclear magnetic resonance study. , 1979, The Journal of biological chemistry.

[47]  L. Stryer,et al.  Calcium-myristoyl protein switch. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[48]  C. Heizmann Calcium-binding proteins: basic concepts and clinical implications. , 1992, General physiology and biophysics.

[49]  B. Vallee,et al.  Metal content of alpha-amylases of various origins. , 1959, The Journal of biological chemistry.

[50]  R. Myers Thermodynamics of chelation , 1978 .

[51]  M. James,et al.  Calcium-binding sites in proteins: a structural perspective. , 1991, Advances in protein chemistry.

[52]  I. Matsuura,et al.  Mutagenesis of the fourth calcium-binding domain of yeast calmodulin. , 1993, The Journal of biological chemistry.

[53]  W. Chazin,et al.  The effect of protein concentration on ion binding. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[54]  O. Epp,et al.  Structure of native porcine pancreatic elastase at 1.65 A resolutions. , 1988, Acta crystallographica. Section B, Structural science.

[55]  S. Inouye,et al.  NMR-derived three-dimensional solution structure of protein S complexed with calcium. , 1994, Structure.

[56]  R. J. Corbett,et al.  The thermodynamics of calcium binding to thermolysin. , 1986, Biophysical chemistry.

[57]  H. Vogel,et al.  Metal ion and drug binding to proteolytic fragments of calmodulin: proteolytic, cadmium-113, and proton nuclear magnetic resonance studies. , 1984, Biochemistry.

[58]  M. Ullner,et al.  How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. , 1994, The Journal of biological chemistry.

[59]  I. Matsuura,et al.  A site-directed mutagenesis study of yeast calmodulin. , 1991, Journal of biochemistry.

[60]  S. Linse,et al.  Calcium binding to the epidermal growth factor homology region of bovine protein C. , 1988, The Journal of biological chemistry.

[61]  C. Anfinsen,et al.  The binding of nucleotides and calcium to the extracellular nuclease of Staphylococcus aureus. Studies by gel filtration. , 1967, The Journal of biological chemistry.

[62]  M Ikehara,et al.  Design and creation of a Ca2+ binding site in human lysozyme to enhance structural stability. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[63]  G. Nelsestuen,et al.  Observations on the binding of lanthanides and calcium to vitamin D-dependent chick intestinal calcium-binding protein. Implications regarding calcium-binding protein function. , 1987, The Journal of biological chemistry.

[64]  I. Campbell,et al.  Ligand requirements for Ca2+ binding to EGF-like domains. , 1992, Protein engineering.

[65]  T. Craig,et al.  Restoration of the calcium binding activity of mutant calmodulins toward normal by the presence of a calmodulin binding structure. , 1991, The Journal of biological chemistry.

[66]  S. Martin,et al.  Protein surface charges and Ca2+ binding to individual sites in calbindin D9k: stopped-flow studies. , 1990, Biochemistry.

[67]  S. Rosenberg,et al.  Stability effects associated with the introduction of a partial and a complete Ca(2+)-binding site into human lysozyme. , 1993, Protein engineering.

[68]  M. Sundaralingam,et al.  Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution. , 1988, The Journal of biological chemistry.

[69]  C. Li,et al.  Neutral lonophores having extraordinary Ca2+ binding strengths and Ca2+/Na+ selectivities in aqueous solution , 1990 .

[70]  H. Su,et al.  Determination of residue specificity in the EF-hand of troponin C for Ca2+ coordination, by genetic engineering. , 1992, The Journal of biological chemistry.

[71]  J. Gergely,et al.  Kinetic studies show that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin. , 1984, Biochemistry.

[72]  J. Cox,et al.  A thermodynamic analysis of the binding of calcium and magnesium ions to parvalbumin. , 2005, European journal of biochemistry.

[73]  T. Blundell,et al.  Structure of pentameric human serum amyloid P component , 1994, Nature.

[74]  Lubert Stryer,et al.  Three-dimensional structure of recoverin, a calcium sensor in vision , 1993, Cell.

[75]  S. Linse,et al.  Calcium binding to the isolated beta-hydroxyaspartic acid-containing epidermal growth factor-like domain of bovine factor X. , 1989, The Journal of biological chemistry.

[76]  M. Tanokura,et al.  A calorimetric study of Ca2+ binding by the parvalbumin of the toad (Bufo): distinguishable binding sites in the molecule , 1986, FEBS letters.

[77]  G. Voordouw,et al.  The cooperative binding of two calcium ions to the double site of apothermolysin. , 1974, Biochemistry.

[78]  E. Kaiser,et al.  Design and synthesis of the pseudo‐EF hand in calbindin D9K: Effect of amino acid substitutions in the α‐helical regions , 1991 .

[79]  D. Clawson,et al.  Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A2 at 2.2 Å resolution , 1991, Nature.

[80]  B. Finn,et al.  The structure of apo‐calmodulin , 1993, FEBS letters.

[81]  G. Anderegg Komplexone XXXVI. Reakinsenthalpie und ‐entropie bei der Bildung der Metallkomplexe der höheren EDTA‐Homologen , 1964 .

[82]  R. Wasserman,et al.  Chemical composition, affinity for calcium, and some related properties of the vitamin D dependent calcium-binding protein. , 1974, Biochemistry.

[83]  M. James,et al.  Crystal structures of the helix-loop-helix calcium-binding proteins. , 1989, Annual review of biochemistry.

[84]  L. Kay,et al.  Solution structure of a polypeptide dimer comprising the fourth Ca(2+)-binding site of troponin C by nuclear magnetic resonance spectroscopy. , 1991, Biochemistry.

[85]  J. Cox,et al.  Cation binding and conformation of human calmodulin-like protein. , 1993, Biochemistry.

[86]  C. Klee,et al.  Ca2+ binding and conformational change in two series of point mutations to the individual Ca(2+)-binding sites of calmodulin. , 1992, The Journal of biological chemistry.

[87]  U. Baumann,et al.  Three‐dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two‐domain protein with a calcium binding parallel beta roll motif. , 1993, The EMBO journal.

[88]  S. Forsén,et al.  Calcium ion binding to pancreatic phospholipase A2 and its zymogen: a 43Ca NMR study. , 1984, Biochemistry.

[89]  K. Miyazono,et al.  Ca2+ binding of latent transforming growth factor‐β1 binding protein , 1993 .

[90]  W. Hunziker,et al.  A functional and degenerate pair of EF hands contains the very high affinity calcium-binding site of calbindin-D28K. , 1993, The Journal of biological chemistry.

[91]  K. Moffat,et al.  The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. , 1986, The Journal of biological chemistry.

[92]  Noncovalent complex between domain AB and domains CD*EF of parvalbumin. , 1991, Biochimica et biophysica acta.

[93]  B. Finn,et al.  Dissection of Calbindin D9k into two Ca2+‐binding subdomains by a combination of mutagenesis and chemical cleavage , 1992, FEBS letters.

[94]  G. Anderegg Komplexone XXXIII. Reaktionsenthalpie und -entropie bei der Bildung der Metallkomplexe von Äthylendiamin- und Diaminocyclohexan-tetraessigsäure , 1963 .

[95]  B D Sykes,et al.  Calcium binding proteins. Elucidating the contributions to calcium affinity from an analysis of species variants and peptide fragments. , 1990, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[96]  M. James,et al.  Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo. , 1988, Biochemistry.

[97]  E. Chiancone,et al.  Dynamic and structural properties of the calcium binding site of bovine serine proteases and their zymogens. A multinuclear nuclear magnetic resonance and stopped-flow study. , 1985, Journal of molecular biology.

[98]  K. H. Kalk,et al.  X-ray structure of phospholipase A2 complexed with a substrate-derived inhibitor , 1990, Nature.

[99]  E. L. Amma,et al.  Restrained least squares refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-ray crystallographic data at 1.6-A resolution. , 1990, The Journal of biological chemistry.

[100]  J. Stenflo,et al.  Calcium-dependent interaction between the epidermal growth factor precursor-like region of human protein C and a monoclonal antibody. , 1987, The Journal of biological chemistry.

[101]  R. Reid Synthetic fragments of calmodulin calcium-binding site III. A test of the acid pair hypothesis. , 1990, The Journal of biological chemistry.

[102]  M. Przybylska,et al.  Structure of oncomodulin refined at 1.85 A resolution. An example of extensive molecular aggregation via Ca2+. , 1990, Journal of molecular biology.

[103]  G. Trigo-Gonzalez,et al.  Helix variants of troponin C with tailored calcium affinities. , 1993, Biochemistry.

[104]  T. Takagi,et al.  Amino acid sequence of two sarcoplasmic calcium-binding proteins from the protochordate Amphioxus , 1986 .

[105]  Z. Grabarek,et al.  Comparative studies on thermostability of calmodulin, skeletal muscle troponin C and their tryptic fragments , 1983, FEBS letters.

[106]  J. Gergely,et al.  Inhibition of mutant troponin C activity by an intra-domain disulphide bond , 1990, Nature.

[107]  J. Stenflo,et al.  Protein structural requirements for Ca2+ binding to the light chain of factor X. Studies using isolated intact fragments containing the gamma-carboxyglutamic acid region and/or the epidermal growth factor-like domains. , 1991, The Journal of biological chemistry.

[108]  H. White Kinetic mechanism of calcium binding to whiting parvalbumin. , 1988, Biochemistry.

[109]  W. Cook,et al.  Structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor refined at 2.0 A resolution. , 1992, Journal of molecular biology.

[110]  D I Stuart,et al.  Refined structure of baboon alpha-lactalbumin at 1.7 A resolution. Comparison with C-type lysozyme. , 1989, Journal of molecular biology.

[111]  J. Bajorath,et al.  The enzymatic activity of proteinase K is controlled by calcium. , 1988, European journal of biochemistry.

[112]  M. Gelb,et al.  Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue , 1990, Science.

[113]  J. Cox,et al.  Characterization of a new sarcoplasmic calcium-binding protein with magnesium-induced cooperativity in the binding of calcium. , 1981, Biochemistry.

[114]  I. Campbell,et al.  The three‐dimensional structure of the first EGF‐like module of human factor IX: Comparison with EGF and TGF‐α , 1992, Protein science : a publication of the Protein Society.

[115]  G. Anderegg,et al.  Die Verwendung der Quecksilberelektrode zur Bestimmung der Stabilitätskonstanten von Metallkomplexen , 1957 .

[116]  B. Jönsson,et al.  Electrostatic contributions to the binding of Ca2+ in calbindin mutants. A Monte Carlo study. , 1990, Biophysical chemistry.

[117]  F A Quiocho,et al.  Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. , 1992, Science.

[118]  T. Grundström,et al.  Structure-function relationships in EF-hand Ca2+-binding proteins. Protein engineering and biophysical studies of calbindin D9k. , 1987, Biochemistry.

[119]  H. Cheung,et al.  Energetics of the binding of calcium and troponin I to troponin C from rabbit skeletal muscle. , 1985, Biophysical journal.

[120]  A. Holmgren,et al.  Calcium-binding properties of bovine factor X lacking the gamma-carboxyglutamic acid-containing region. , 1984, The Journal of biological chemistry.

[121]  S. Martin,et al.  Stopped-flow studies of calcium dissociation from calcium-binding-site mutants of Drosophila melanogaster calmodulin. , 1992, European journal of biochemistry.

[122]  R. Reid A synthetic 33-residue analogue of bovine brain calmodulin calcium binding site III: synthesis, purification, and calcium binding. , 1987, Biochemistry.

[123]  J. Putkey,et al.  Site-directed mutation of the trigger calcium-binding sites in cardiac troponin C. , 1989, The Journal of biological chemistry.

[124]  J. Gergely,et al.  Cooperative binding to the Ca2+-specific sites of troponin C in regulated actin and actomyosin. , 1983, The Journal of biological chemistry.

[125]  B. Dahlbäck,et al.  Novel type of very high affinity calcium-binding sites in beta-hydroxyasparagine-containing epidermal growth factor-like domains in vitamin K-dependent protein S. , 1990, The Journal of biological chemistry.

[126]  J. Falke,et al.  Novel ion specificity of a carboxylate cluster Mg(II) binding site: strong charge selectivity and weak size selectivity. , 1993, Biochemistry.

[127]  T. Grundström,et al.  Mutational effects on the cooperativity of Ca2+ binding in calmodulin. , 1993, Biochemistry.

[128]  E. Snyder,et al.  Calcium(II) site specificity: effect of size and charge on metal ion binding to an EF-hand-like site. , 1990, Biochemistry.

[129]  J. Stenflo,et al.  Calcium affinity of the NH2-terminal epidermal growth factor-like module of factor X. Effect of the gamma-carboxyglutamic acid-containing module. , 1993, The Journal of biological chemistry.

[130]  B. Matthews,et al.  Structure of thermolysin refined at 1.6 A resolution. , 1982, Journal of molecular biology.

[131]  J. Cox,et al.  Thermodynamics of cation binding to Nereis sarcoplasmic calcium-binding protein. Direct binding studies, microcalorimetry and conformational changes. , 1992, European journal of biochemistry.

[132]  C. Frömmel,et al.  Calcium ion binding by thermitase , 1989 .

[133]  K S Wilson,et al.  Crystal structure of thermitase at 1.4 A resolution. , 1990, Journal of molecular biology.

[134]  J. Moult,et al.  Construction and characterization of a spectral probe mutant of troponin C: application to analyses of mutants with increased Ca2+ affinity. , 1992, Biochemistry.

[135]  J Moult,et al.  A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. , 1986, The Journal of biological chemistry.

[136]  P. Leadlay,et al.  Prokaryotic calcium‐binding protein of the calmodulin superfamily Calcium binding to a Saccharopolyspora erythraea 20 kDa protein , 1992, FEBS letters.

[137]  G. Anantharamaiah,et al.  Structural and biological studies on synthetic peptide analogues of a low-affinity calcium-binding site of skeletal troponin C. , 1987, Biochimica et biophysica acta.

[138]  I. Campbell,et al.  The effect of aspartate hydroxylation on calcium binding to epidermal growth factor-like modules in coagulation factors IX and X. , 1993, The Journal of biological chemistry.

[139]  T. Grundström,et al.  The role of protein surface charges in ion binding , 1988, Nature.

[140]  M. James,et al.  Towards an understanding of the effects of calcium on protein structure and function , 1991, Current Biology.

[141]  V. Gerke,et al.  S100P, a novel Ca(2+)-binding protein from human placenta. cDNA cloning, recombinant protein expression and Ca2+ binding properties. , 1992, European journal of biochemistry.

[142]  A. Gronenborn,et al.  Solution structure of a calmodulin-target peptide complex by multidimensional NMR. , 1994, Science.

[143]  C. Betzel,et al.  Synchrotron X-ray data collection and restrained least-squares refinement of the crystal structure of proteinase K at 1.5 A resolution. , 1988, Acta Crystallographica Section B Structural Science.

[144]  C. Kay,et al.  Properties of isolated recombinant N and C domains of chicken troponin C. , 1994, Biochemistry.

[145]  A. Levitzki,et al.  Metal-binding sites of concanavalin A and their role in the binding of alpha-methyl d-glucopyranoside. , 1968, The Biochemical journal.

[146]  F A Quiocho,et al.  The calcium-binding site in the galactose chemoreceptor protein. Crystallographic and metal-binding studies. , 1989, The Journal of biological chemistry.

[147]  E. Snyder,et al.  Quantitating and engineering the ion specificity of an EF-hand-like Ca2+ binding. , 1991, Biochemistry.

[148]  J. Cox,et al.  Structure of a sarcoplasmic calcium-binding protein from amphioxus refined at 2.4 A resolution. , 1993, Journal of molecular biology.

[149]  J. Kuźnicki,et al.  Biochemical properties of calcyclin--a potential marker of some diseases. , 1993, Acta Biochimica Polonica.

[150]  R. Klevit,et al.  A series of point mutations reveal interactions between the calcium‐binding sites of calmodulin , 1992, Protein science : a publication of the Protein Society.

[151]  S. Linse,et al.  Disulfide bonds in homo‐ and heterodimers of EF‐hand subdomains of calbindin D9k: Stability, calcium binding, and NMR studies , 1993, Protein science : a publication of the Protein Society.

[152]  A. Means,et al.  Calmodulin-cardiac troponin C chimeras. Effects of domain exchange on calcium binding and enzyme activation. , 1993, The Journal of biological chemistry.

[153]  S. Forsén,et al.  Thermodynamics of Ca2+ binding to calmodulin and its tryptic fragments. , 1991, Biophysical chemistry.

[154]  J. Astermark,et al.  Structural requirements for Ca2+ binding to the gamma-carboxyglutamic acid and epidermal growth factor-like regions of factor IX. Studies using intact domains isolated from controlled proteolytic digests of bovine factor IX. , 1991, The Journal of biological chemistry.

[155]  T. Petrova,et al.  Cation binding and conformation of tryptic fragments of Nereis sarcoplasmic calcium-binding protein: calcium-induced homo- and heterodimerization. , 1993, Biochemistry.

[156]  M. Brunori,et al.  Evidence for the interaction between the calcium indicator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and calcium-binding proteins. , 1986, Journal of Biological Chemistry.

[157]  M. Akke,et al.  Nuclear magnetic resonance studies of the internal dynamics in Apo, (Cd2+)1 and (Ca2+)2 calbindin D9k. The rates of amide proton exchange with solvent. , 1992, Journal of molecular biology.

[158]  G M Edelman,et al.  The covalent and three-dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides. , 1975, The Journal of biological chemistry.

[159]  C. Esmon,et al.  Derivatives of blood coagulation factor IX contain a high affinity Ca2+-binding site that lacks gamma-carboxyglutamic acid. , 1984, The Journal of biological chemistry.

[160]  T. Grundström,et al.  Effect of amino acid substitutions and deletions on the thermal stability, the pH stability and unfolding by urea of bovine calbindin D9k. , 1988, European journal of biochemistry.

[161]  H. Scheraga,et al.  Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids , 1975 .

[162]  R. Hodges,et al.  Determination of the solution structure of a synthetic two-site calcium-binding homodimeric protein domain by NMR spectroscopy. , 1993, Biochemistry.

[163]  G. Anderegg PYRIDINE DERIVATIVES AS COMPLEXING AGENTS XII. Thermodynamics of Complex Formation with 2-Pyridylmethyl-iminodiacetic Acid and its 6-Methyl Substituted Derivative , 1981 .

[164]  J. Falke,et al.  Kinetic control of Ca(II) signaling: tuning the ion dissociation rates of EF-hand Ca(II) binding sites. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[165]  S. Martin,et al.  Circular dichroism studies on calcium binding to two series of Ca2+ binding site mutants of Drosophila melanogaster calmodulin. , 1992, Biochemistry.

[166]  H. Helgeson Thermodynamics of complex dissociation in aqueous solution at elevated temperatures , 1967 .

[167]  C. Klee,et al.  Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[168]  B. Sykes,et al.  Spectroscopic analysis of a methionine-48 to tyrosine mutant of chicken troponin C. , 1992, Biochemistry.

[169]  T. Drakenberg,et al.  The solution structures of mutant calbindin D9k's, as determined by NMR, show that the calcium-binding site can adopt different folds. , 1993, Biochemistry.

[170]  W. Chazin,et al.  Two-dimensional 1H nuclear magnetic resonance studies of the half-saturated (Ca2+)1 state of calbindin D9k. Further implications for the molecular basis of cooperative Ca2+ binding. , 1993, Journal of molecular biology.

[171]  R. J. Williams The Stability of Complex Ions with Special Reference to Hydration , 1954 .

[172]  C. Kay,et al.  Determination of and corrections to sequences of turkey and chicken troponins-C. Effects of Thr-130 to Ile mutation on Ca2+ affinity. , 1991, The Journal of biological chemistry.

[173]  K. Yutani,et al.  Thermodynamic changes in the binding of Ca2+ to a mutant human lysozyme (D86/92). Enthalpy-entropy compensation observed upon Ca2+ binding to proteins. , 1992, The Journal of biological chemistry.

[174]  M. Ikura,et al.  Communication between two globular domains of calmodulin in the presence of mastoparan or caldesmon fragment. Ca2+ binding and 1H NMR. , 1987, The Journal of biological chemistry.

[175]  T. Grundström,et al.  Kinetics of calcium binding to calbindin mutants. , 1988, European journal of biochemistry.

[176]  S. Linse,et al.  Calcium binding to calmodulin and its globular domains. , 1991, The Journal of biological chemistry.

[177]  M. Sundaralingam,et al.  A structure-function relationship for the calcium affinities of regulatory proteins containing 'EF-hand' pairs. , 1988, Protein engineering.

[178]  G. de Haas,et al.  Studies on phospholipase A and its zymogen from porcine pancreas. 3. Action of the enzyme on short-chain lecithins. , 1970, Biochimica et biophysica acta.

[179]  S. Martin,et al.  Kinetics of cadmium and terbium dissociation from calmodulin and its tryptic fragments. , 1986, European journal of biochemistry.

[180]  S. Martin,et al.  Kinetics of calcium dissociation from calmodulin and its tryptic fragments. A stopped-flow fluorescence study using Quin 2 reveals a two-domain structure. , 1985, European journal of biochemistry.

[181]  F A Quiocho,et al.  Calmodulin structure refined at 1.7 A resolution. , 1992, Journal of molecular biology.

[182]  S. Linse,et al.  Calbindin-D28K, a 1 alpha,25-dihydroxyvitamin D3-induced calcium-binding protein, binds five or six Ca2+ ions with high affinity. , 1990, The Journal of biological chemistry.

[183]  E. Lattman,et al.  The crystal structure of the ternary complex of staphylococcal nuclease, Ca2+ and the inhibitor pdTp, refined at 1.65 Å , 1989, Proteins.

[184]  J. Putkey,et al.  Differential recovery of Ca2+ binding activity in mutated EF-hands of cardiac troponin C. , 1993, The Journal of biological chemistry.