Sparse Partially Collapsed MCMC for Parallel Inference in Topic Models
暂无分享,去创建一个
David Broman | Maans Magnusson | Mattias Villani | Leif Jonsson | David Broman | Maans Magnusson | M. Villani | Leif Jonsson
[1] Joseph Tassarotti,et al. Augur: Data-Parallel Probabilistic Modeling , 2014, NIPS.
[2] J. Rosenthal,et al. Adaptive Gibbs samplers and related MCMC methods , 2011, 1101.5838.
[3] Treebank Penn,et al. Linguistic Data Consortium , 1999 .
[4] Max Welling,et al. Fast collapsed gibbs sampling for latent dirichlet allocation , 2008, KDD.
[5] Zhiyuan Liu,et al. PLDA+: Parallel latent dirichlet allocation with data placement and pipeline processing , 2011, TIST.
[6] Ruslan Salakhutdinov,et al. Evaluation methods for topic models , 2009, ICML '09.
[7] G. Tian,et al. Dirichlet and Related Distributions: Theory, Methods and Applications , 2011 .
[8] Jianfeng Gao,et al. A comparison of Bayesian estimators for unsupervised Hidden Markov Model POS taggers , 2008, EMNLP.
[9] Samuel Reese,et al. Word-sense disambiguated multilingual Wikipedia corpus , 2010, LREC 2010.
[10] Yee Whye Teh,et al. Dirichlet Process , 2017, Encyclopedia of Machine Learning and Data Mining.
[11] Thomas L. Griffiths,et al. Learning author-topic models from text corpora , 2010, TOIS.
[12] Doug Lea,et al. A Java fork/join framework , 2000, JAVA '00.
[13] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[14] H. S. Heaps,et al. Information retrieval, computational and theoretical aspects , 1978 .
[15] Alastair J. Walker,et al. An Efficient Method for Generating Discrete Random Variables with General Distributions , 1977, TOMS.
[16] George Marsaglia,et al. A simple method for generating gamma variables , 2000, TOMS.
[17] Gonzalo Navarro,et al. Large text searching allowing errors , 1997 .
[18] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[19] Alexander T. Ihler,et al. Understanding Errors in Approximate Distributed Latent Dirichlet Allocation , 2012, IEEE Transactions on Knowledge and Data Engineering.
[20] Edwin V. Bonilla,et al. Improving Topic Coherence with Regularized Topic Models , 2011, NIPS.
[21] Andrew McCallum,et al. Efficient methods for topic model inference on streaming document collections , 2009, KDD.
[22] Ning Chen,et al. Gibbs Max-Margin Topic Models with Fast Sampling Algorithms , 2013, ICML.
[23] Alexander J. Smola,et al. An architecture for parallel topic models , 2010, Proc. VLDB Endow..
[24] Jun S. Liu,et al. The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .
[25] Feng Yan,et al. Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units , 2009, NIPS.
[26] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[27] Alexander J. Smola,et al. Reducing the sampling complexity of topic models , 2014, KDD.
[28] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[29] Robert Östling,et al. Bayesian Models for Multilingual Word Alignment , 2015 .
[30] Babak Shahbaba,et al. Distributed Stochastic Gradient MCMC , 2014, ICML.
[31] Tie-Yan Liu,et al. LightLDA: Big Topic Models on Modest Computer Clusters , 2014, WWW.
[32] R. Kohn,et al. Regression Density Estimation Using Smooth Adaptive Gaussian Mixtures , 2007 .
[33] Thomas Stibor,et al. Efficient Collapsed Gibbs Sampling for Latent Dirichlet Allocation , 2010, ACML.
[34] Andrew McCallum,et al. Topics over time: a non-Markov continuous-time model of topical trends , 2006, KDD '06.
[35] Max Welling,et al. Asynchronous Distributed Learning of Topic Models , 2008, NIPS.
[36] Jen-Tzung Chien,et al. Bayesian Sparse Topic Model , 2013, Journal of Signal Processing Systems.
[37] Max Welling,et al. Distributed Algorithms for Topic Models , 2009, J. Mach. Learn. Res..
[38] Lancelot F. James,et al. Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .
[39] M. Plummer,et al. CODA: convergence diagnosis and output analysis for MCMC , 2006 .
[40] Song-Chun Zhu,et al. First Hitting Time Analysis of the Independence Metropolis Sampler , 2006 .
[41] Alexander J. Smola,et al. Scalable inference in latent variable models , 2012, WSDM '12.
[42] Inderjit S. Dhillon,et al. A Scalable Asynchronous Distributed Algorithm for Topic Modeling , 2014, WWW.
[43] Jun S. Liu,et al. Covariance Structure and Convergence Rate of the Gibbs Sampler with Various Scans , 1995 .