Genus distribution of graph amalgamations: Pasting when one root has arbitrary degree

This paper concerns counting the imbeddings of a graph in a surface. In the first installment of our current work, we showed how to calculate the genus distribution of an iterated amalgamation of copies of a graph whose genus distribution is already known and is further analyzed into a partitioned genus distribution (which is defined for a double-rooted graph ). Our methods were restricted there to the case with two 2-valent roots. In this sequel we substantially extend the method in order to allow one of the two roots to have arbitrarily high valence.

[1]  Marston D. E. Conder,et al.  Determination of all Regular Maps of Small Genus , 2001, J. Comb. Theory, Ser. B.

[2]  Saul Stahl,et al.  Permutation-partition pairs. III. Embedding distributions of linear families of graphs , 1991, J. Comb. Theory, Ser. B.

[3]  Jonathan L. Gross,et al.  Hierarchy for imbedding-distribution invariants of a graph , 1987, J. Graph Theory.

[4]  Tao Wang,et al.  The Total Embedding Distributions of Cacti and Necklaces , 2006 .

[5]  Jonathan L. Gross,et al.  Genus Distribution of Graph Amalgamations: Pasting at Root-Vertices , 2010, Ars Comb..

[6]  Jin Ho Kwak,et al.  Total embedding distributions for bouquets of circles , 2002, Discret. Math..

[7]  Charles H. C. Little,et al.  The Foundations of Topological Graph Theory , 1995 .

[8]  Mike J. Grannell,et al.  Exponential Families of Non-Isomorphic Triangulations of Complete Graphs , 2000, J. Comb. Theory, Ser. B.

[9]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[10]  Yanpei Liu,et al.  Orientable embedding genus distribution for certain types of graphs , 2008, J. Comb. Theory, Ser. B.

[11]  Terry I. Visentin,et al.  On the Genus Distribution of (p, q, n)-Dipoles , 2007, Electron. J. Comb..

[12]  Bruce P. Mull Enumerating the orientable 2-cell imbeddings of complete bipartite graphs , 1999, J. Graph Theory.

[13]  D. Jackson,et al.  A character-theoretic approach to embeddings of rooted maps in an orientable surface of given genus , 1990 .

[14]  Jonathan L. Gross,et al.  Genus distribution of graphs under surgery: adding edges and splitting vertices , 2010 .

[15]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[16]  Jianer Chen,et al.  Overlap matrices and total imbedding distributions , 1994, Discret. Math..

[17]  Saul Stahl,et al.  Region distributions of graph embeddings and stirling numbers , 1990, Discret. Math..

[18]  Jonathan L. Gross,et al.  Genus distributions of graphs under edge-amalgamations , 2010, Ars Math. Contemp..

[19]  Liu Yan-pei,et al.  Genus Distribution for Two Classes of Graphs , 2006 .

[20]  Esther Hunt Tesar Genus distribution of Ringel ladders , 2000, Discret. Math..

[21]  D. Jackson Counting cycles in permutations by group characters, with an application to a topological problem , 1987 .

[22]  Jin Ho Kwak,et al.  Enumeration of graph embeddings , 1994, Discret. Math..

[23]  Lyle Andrew Mcgeoch,et al.  Algorithms for two graph problems: computing maximum-genus imbeddings and the two-server problem , 1987 .

[24]  Mike J. Grannell,et al.  A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs , 2008, J. Comb. Theory, Ser. B.

[25]  Jonathan L. Gross,et al.  Journal of Graph Algorithms and Applications Genus Distributions of Cubic Outerplanar Graphs , 2022 .

[26]  Jozef Sirán,et al.  Triangular embeddings of complete graphs from graceful labellings of paths , 2007, J. Comb. Theory B.

[27]  Richard Statman,et al.  Genus distributions for two classes of graphs , 1989, J. Comb. Theory, Ser. B.

[28]  Jonathan L. Gross,et al.  Genus distributions for bouquets of circles , 1989, J. Comb. Theory, Ser. B.

[29]  David M. Jackson,et al.  An atlas of the smaller maps in orientable and nonorientable surfaces , 2000 .

[30]  Vladimir P. Korzhik,et al.  Exponential Families of Non-isomorphic Non-triangular Orientable Genus Embeddings of Complete Graphs , 2002, J. Comb. Theory, Ser. B.

[31]  Yanpei Liu,et al.  Orientable embedding distributions by genus for certain type of non-planar graphs (I) , 2006, Ars Comb..

[32]  Saul Stahl,et al.  Region distributions of some small diameter graphs , 1991, Discret. Math..

[33]  L. Beineke,et al.  Topics in Topological Graph Theory , 2009 .