Deterministic global optimization for error-in-variables parameter estimation

Standard techniques for solving the optimization problem arising in parameter estimation by the error-in-variables (EIV) approach offer no guarantee that the global optimum has been found. It is demonstrated here that the interval-Newton approach can provide a powerful, deterministic global optimization methodology for the reliable solution of EIV parameter estimation problems in chemical process modeling, offering mathematical and computational guarantees that the global optimum has been found. Although this methodology is typically regarded as being applicable only to very small problems, it is successfully applied here to problems with over 200 variables. It is a general-purpose technique and is applied here to a diverse group of problems, including examples in reactor modeling, in modeling vapor-liquid equilibrium, and in modeling a heat exchanger network.

[1]  H. Britt,et al.  The Estimation of Parameters in Nonlinear, Implicit Models , 1973 .

[2]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[3]  Jean-Francois Fabries,et al.  Method of evaluation and reduction of vapor‐liquid equilibrium data of binary mixtures , 1975 .

[4]  J. Gmehling Vapor-Liquid Equilibrium Data Collection , 1977 .

[5]  Edward A. Grens,et al.  Evaluation of parameters for nonlinear thermodynamic models , 1978 .

[6]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[7]  Vladimír Rod,et al.  Iterative estimation of model parameters when measurements of all variables are subject to error , 1980 .

[8]  Park M. Reilly,et al.  Statistical estimation of parameters in vapor‐liquid equilibrium , 1982 .

[9]  J. Gaube J. Gmehling, U. Onken, W. Arlt: Vapor-Liquid-Equilibrium Data Collection, in der Reihe: Chemistry Data Series, Vol. I. Parts 3 + 4 Aldehydes and Ketones Ethers, Dechema, Frankfurt 1979. 624 Seiten. Part 6a Aliphatic Hydrocarbons C4-C6, Dechema, Frankfurt , 1982 .

[10]  H. Schwetlick,et al.  Numerical Methods for Estimating Parameters in Nonlinear Models With Errors in the Variables , 1985 .

[11]  S. E. Keeler,et al.  An application of the Error-in-Variables Model—parameter estimation from Van Ness-type vapour-liquid equilibrium experiments , 1987 .

[12]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[13]  S. Vajda,et al.  An extended Marquardt-type procedure for fitting error-in-variables models , 1987 .

[14]  Thomas F. Edgar,et al.  Robust error‐in‐variables estimation using nonlinear programming techniques , 1990 .

[15]  R. Baker Kearfott,et al.  Algorithm 681: INTBIS, a portable interval Newton/bisection package , 1990, TOMS.

[16]  A. Neumaier Interval methods for systems of equations , 1990 .

[17]  L. Biegler,et al.  Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems , 1991 .

[18]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[19]  Lorenz T. Biegler,et al.  Reduced successive quadratic programming strategy for errors-in-variables estimation , 1992 .

[20]  Lorenz T. Biegler,et al.  A parallel implementation for parameter estimation with implicit models , 1993, Ann. Oper. Res..

[21]  Charles N. Haas,et al.  Reduction of ion-exchange equilibria data using an error in variables approach , 1994 .

[22]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[23]  William R. Esposito,et al.  Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variables Approach , 1998 .

[24]  M. Stadtherr,et al.  Reliable Nonlinear Parameter Estimation in VLE Modeling , 2000 .

[25]  M. Stadtherr,et al.  Reliable nonlinear parameter estimation using interval analysis: error-in-variable approach , 2000 .

[26]  Mark A. Stadtherr,et al.  New interval methodologies for reliable chemical process modeling , 2002 .