AN EFFICIENT NUMERICAL METHOD FOR CAVITATION IN NONLINEAR ELASTICITY

This paper is concerned with the numerical computation of cavitation in nonlinear elasticity. The Crouzeix–Raviart nonconforming finite element method is shown to prevent the degeneration of the mesh provoked by the conventional finite element approximation of this problem. Upon the addition of a suitable stabilizing term to the elastic energy, the method is used to solve cavitation problems in both radially symmetric and non-radially symmetric settings. While the radially symmetric examples serve to illustrate the efficiency of the method, and for validation purposes, the experiments with non-centered and multiple cavities (carried out for the first time) yield novel observations of situations potentially leading to void coalescence.

[1]  Yijiang Lian,et al.  A NUMERICAL STUDY ON CAVITATION IN NONLINEAR ELASTICITY — DEFECTS AND CONFIGURATIONAL FORCES , 2011 .

[2]  Zhiping Li,et al.  A dual-parametric finite element method for cavitation in nonlinear elasticity , 2011, J. Comput. Appl. Math..

[3]  Christoph Ortner,et al.  Nonconforming finite-element discretization of convex variational problems , 2011 .

[4]  D. Henao,et al.  Fracture Surfaces and the Regularity of Inverses for BV Deformations , 2011 .

[5]  D. Henao,et al.  Invertibility and Weak Continuity of the Determinant for the Modelling of Cavitation and Fracture in Nonlinear Elasticity , 2010 .

[6]  S. Spector,et al.  On the Symmetry of Energy-Minimising Deformations in Nonlinear Elasticity I: Incompressible Materials , 2010 .

[7]  S. Spector,et al.  On the Symmetry of Energy-Minimising Deformations in Nonlinear Elasticity II: Compressible Materials , 2010 .

[8]  J. Sivaloganathan,et al.  The Numerical Computation of the Critical Boundary Displacement for Radial Cavitation , 2009 .

[9]  D. Henao Cavitation, Invertibility, and Convergence of Regularized Minimizers in Nonlinear Elasticity , 2008 .

[10]  N. Petrinic,et al.  Improved predictive modelling of strain Localisation and ductile fracture in a Ti-6Al-4V alloy subjected to impact loading , 2006 .

[11]  Jeyabal Sivaloganathan,et al.  The Convergence of Regularized Minimizers for Cavitation Problems in Nonlinear Elasticity , 2006, SIAM J. Appl. Math..

[12]  Yu Bai,et al.  A TRUNCATION METHOD FOR DETECTING SINGULAR MINIMIZERS INVOLVING THE LAVRENTIEV PHENOMENON , 2006 .

[13]  P. Hansbo,et al.  Stabilized Crouzeix‐Raviart element for the Darcy‐Stokes problem , 2005 .

[14]  Jeyabal Sivaloganathan,et al.  On Cavitation, Configurational Forces and Implications for Fracture in a Nonlinearly Elastic Material , 2002 .

[15]  SOME REMARKS ON THE THEORY OF ELASTICITY FOR COMPRESSIBLE NEOHOOKEAN MATERIALS , 2002 .

[16]  J. Ball Some Open Problems in Elasticity , 2002 .

[17]  J. Ball Foundations of Computational Mathematics: Singularities and computation of minimizers for variational problems , 2001 .

[18]  S. Spector,et al.  On the Existence of Minimizers with Prescribed Singular Points in Nonlinear Elasticity , 2000 .

[19]  S. Spector,et al.  On the Optimal Location of Singularities Arising in Variational Problems of Nonlinear Elasticity , 2000 .

[20]  John William Neuberger,et al.  Sobolev gradients and differential equations , 1997 .

[21]  C. Horgan,et al.  Cavitation in Nonlinearly Elastic Solids: A Review , 1995 .

[22]  S. Spector,et al.  An existence theory for nonlinear elasticity that allows for cavitation , 1995 .

[23]  K. Morton,et al.  Numerical Solution of Partial Differential Equations , 1995 .

[24]  O. Betancourt,et al.  The Numerical Computation of Singular Minimizers in Two-Dimensional Elasticity , 1994 .

[25]  C. Horgan,et al.  Cavitation for incompressible anisotropic nonlinearly elastic spheres , 1993 .

[26]  Zhipping Li Element removal method for singular minimizers in variational problems involving Lavrentiev phenomenon , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[27]  R. S. Falk Nonconforming finite element methods for the equations of linear elasticity , 1991 .

[28]  S. Muêller Det = det. A remark on the distributional determinant , 1990 .

[29]  J. Ball,et al.  A numerical method for detecting singular minimizers , 1987 .

[30]  G. Knowles,et al.  Finite element approximation to singular minimizers, and applications to cavitation in non-linear elasticity , 1987 .

[31]  J. Sivaloganathan Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity , 1986 .

[32]  C. Horgan,et al.  A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void , 1986 .

[33]  MINIMIZERS AND THE EULER-LAGRANGE EQUATIONS. , 1984 .

[34]  S. H. Goods,et al.  THE NUCLEATION OF CAVITIES BY PLASTIC DEFORMATION , 1983 .

[35]  J. Ball,et al.  Discontinuous equilibrium solutions and cavitation in nonlinear elasticity , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[36]  S. H. Goods,et al.  Overview No. 1: The nucleation of cavities by plastic deformation , 1979 .

[37]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[38]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[39]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[40]  Alan N. Gent,et al.  Internal rupture of bonded rubber cylinders in tension , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[41]  M. Lavrentieff,et al.  Sur quelques problèmes du calcul des variations , 1927 .

[42]  OX St.Giles'Oxford Singularities and Computation of Minimizers for Variational Problems , 2022 .