Modification of matrix for magnesia material by in situ nitridation

[1]  T. Laoui,et al.  Effect of nano-size oxy-nitride starting precursors on spark plasma sintering of calcium sialons along the alpha/(alpha + beta) phase boundary , 2019, Ceramics International.

[2]  Zhihui Hu,et al.  Hot-pressed sintered Ca-α-Sialon ceramics with grains from short prismatic to elongated morphology synthesized via carbothermal reduction and nitridation , 2018, Journal of Alloys and Compounds.

[3]  D. Jia,et al.  Enhanced thermal shock resistance of low-carbon Al2O3-C refractories with direct CVD synthesis of nano carbon decorated oxides , 2018 .

[4]  R. Middleton,et al.  Reducing energy consumption and carbon emissions of magnesia refractory products: A life-cycle perspective , 2018 .

[5]  Ziyang Dai,et al.  Effect of La2O3 addition on densification behavior and properties of Mg-doped sialon , 2018 .

[6]  J. Dai,et al.  Use of magnesia sand for optimal design of high performance magnesium potassium phosphate cement mortar , 2017 .

[7]  Liang Guohua,et al.  Formation mechanism of MgAlON phase in aluminum–magnesia composite materials , 2017 .

[8]  U. Roy,et al.  Improvement in thermomechanical properties of off-grade natural magnesite by addition of Y2O3 , 2017 .

[9]  Yawei Li,et al.  Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets , 2017 .

[10]  Guodong Zhang,et al.  Effect of molar ratios of MgO/Al2O3 on the sintering behavior and thermal shock resistance of MgOAl2O3SiO2 composite ceramics , 2017 .

[11]  Guodong Zhang,et al.  Effect of Al2O3 + 4SiO2 Additives on Sintering Behavior and Thermal Shock Resistance of MgO-Based Ceramics , 2016, Refractories and Industrial Ceramics.

[12]  T. Akiyama,et al.  Spark plasma sintering behavior of combustion-synthesized (Y, Ca)-α-SiAlON , 2016 .

[13]  C. Aneziris,et al.  Enhancing the thermal shock resistance of alumina-rich magnesium aluminate spinel refractories by an aluminum titanate phase , 2016 .

[14]  B. Blanpain,et al.  The influence of slag compositional changes on the chemical degradation of magnesia-chromite refractories exposed to PbO-based non-ferrous slag saturated in spinel , 2015 .

[15]  Xudong Luo,et al.  Effect of CeO2 on the Crystalline Structure of Forsterite Synthesized from Low-Grade Magnesite , 2013, Refractories and Industrial Ceramics.

[16]  T. Troczynski,et al.  The effect of nano-Cr2O3 on solid-solution assisted sintering of MgO refractories , 2012 .

[17]  Qian Liu,et al.  The impact of thermal history on the microstructure and properties of Dy-α-Sialon , 2012 .

[18]  Lan Jiang,et al.  Effect of additives on properties of aluminium titanate ceramics , 2011 .

[19]  S. Yang,et al.  The effect of precursor composition and sintering additives on the formation of ß-sialon from Al, Si and Al2O3 powders , 2011 .

[20]  D. Swinbourne,et al.  Comparison of Ferrous Calcium Silicate Slag and Calcium Ferrite Slag Interactions with Magnesia-Chrome Refractories , 2011 .

[21]  Zou Zong-shu Effect of Raw Materials on the Volume Change of Direct-Bonded Magnesia-Chrome Refractory Bricks , 2006 .

[22]  L. Nan MgO/α-Sialon Bonded Magnesia Refractories Prepared by in-situ Nitridation Process , 2005 .

[23]  Hasan Mandal,et al.  New developments in a-SiAlON ceramics , 1999 .

[24]  Wen-ru Sun,et al.  Characteristics of Ca-α-sialon : Phase formation, microstructure and mechanical properties , 1999 .