A First-Passage Kinetic Monte Carlo method for reaction-drift-diffusion processes

Stochastic reaction-diffusion models are now a popular tool for studying physical systems in which both the explicit diffusion of molecules and noise in the chemical reaction process play important roles. The Smoluchowski diffusion-limited reaction model (SDLR) is one of several that have been used to study biological systems. Exact realizations of the underlying stochastic processes described by the SDLR model can be generated by the recently proposed First-Passage Kinetic Monte Carlo (FPKMC) method. This exactness relies on sampling analytical solutions to one and two-body diffusion equations in simplified protective domains.In this work we extend the FPKMC to allow for drift arising from fixed, background potentials. As the corresponding Fokker-Planck equations that describe the motion of each molecule can no longer be solved analytically, we develop a hybrid method that discretizes the protective domains. The discretization is chosen so that the drift-diffusion of each molecule within its protective domain is approximated by a continuous-time random walk on a lattice. New lattices are defined dynamically as the protective domains are updated, hence we will refer to our method as Dynamic Lattice FPKMC or DL-FPKMC. We focus primarily on the one-dimensional case in this manuscript, and demonstrate the numerical convergence and accuracy of our method in this case for both smooth and discontinuous potentials. We also present applications of our method, which illustrate the impact of drift on reaction kinetics.

[1]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[2]  E. Cox,et al.  Single molecule measurements of repressor protein 1D diffusion on DNA. , 2006, Physical review letters.

[3]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 2. The Escherichia coli repressor--operator interaction: equilibrium measurements. , 1981, Biochemistry.

[4]  J. Elf,et al.  Stochastic reaction-diffusion kinetics in the microscopic limit , 2010, Proceedings of the National Academy of Sciences.

[5]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[6]  Petros Koumoutsakos,et al.  Adaptive mesh refinement for stochastic reaction-diffusion processes , 2011, J. Comput. Phys..

[7]  Diego Rossinelli,et al.  Accelerated stochastic and hybrid methods for spatial simulations of reaction–diffusion systems , 2008 .

[8]  J. Elf,et al.  Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. , 2004, Systems biology.

[9]  Steven S. Andrews,et al.  Intracellular Pattern Formation : A Spatial Stochastic Model of Bacterial division site selection proteins MinCDE , 2004 .

[10]  S. Isaacson Relationship between the reaction–diffusion master equation and particle tracking models , 2008 .

[11]  Gürol M. Süel,et al.  An excitable gene regulatory circuit induces transient cellular differentiation , 2006, Nature.

[12]  Andrei D. Polyanin,et al.  Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations , Chapman & Hall/CRC, Boca , 2004 .

[13]  L. Petzold,et al.  Reaction-diffusion master equation in the microscopic limit. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Joel Keizer,et al.  Nonequilibrium statistical thermodynamics and the effect of diffusion on chemical reaction rates , 1982 .

[15]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[16]  P. T. Wolde,et al.  Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics. , 2005 .

[17]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[18]  M. von Smoluchowski,et al.  STUDY OF A MATHEMATICAL THEORY FOR THE COAGULATION KINETICS OF COLLOIDAL SOLUTIONS , 1968 .

[19]  D. Bray,et al.  Stochastic simulation of chemical reactions with spatial resolution and single molecule detail , 2004, Physical biology.

[20]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[21]  B. Alberts,et al.  Molecular Biology of the Cell (Fifth Edition) , 2008 .

[22]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[23]  A. Riggs,et al.  The lac represser-operator interaction , 1970 .

[24]  Antoine Lejay,et al.  A Random Walk on Rectangles Algorithm , 2006 .

[25]  S. Jonathan Chapman,et al.  Analysis of Brownian Dynamics Simulations of Reversible Bimolecular Reactions , 2010, SIAM J. Appl. Math..

[26]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. , 1981, Biochemistry.

[27]  S. Isaacson A convergent reaction-diffusion master equation. , 2012, Journal of Chemical Physics.

[28]  N. Shimamoto,et al.  One-dimensional Diffusion of Proteins along DNA , 1999, The Journal of Biological Chemistry.

[29]  Boris N. Kholodenko,et al.  Positional Information Generated by Spatially Distributed Signaling Cascades , 2009, PLoS Comput. Biol..

[30]  Edward H. Twizell,et al.  Second-order,L0-stable methods for the heat equation with time-dependent boundary conditions , 1996, Adv. Comput. Math..

[31]  Ramon Grima,et al.  Discreteness-induced concentration inversion in mesoscopic chemical systems , 2012, Nature Communications.

[32]  Per Lötstedt,et al.  Flexible single molecule simulation of reaction-diffusion processes , 2011, J. Comput. Phys..

[33]  S. Isaacson,et al.  Reaction-diffusion master equation, diffusion-limited reactions, and singular potentials. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  I. Sbalzarini,et al.  Exact on-lattice stochastic reaction-diffusion simulations using partial-propensity methods. , 2011, The Journal of chemical physics.

[35]  M. Doi,et al.  Second quantization representation for classical many-particle system , 2001 .

[36]  M. Moreau,et al.  Enhanced reaction kinetics in biological cells , 2008, 0802.1493.

[37]  Samuel A. Isaacson,et al.  The Reaction-Diffusion Master Equation as an Asymptotic Approximation of Diffusion to a Small Target , 2009, SIAM J. Appl. Math..

[38]  Alfonso Martinez Arias,et al.  Filtering transcriptional noise during development: concepts and mechanisms , 2006, Nature Reviews Genetics.

[39]  Andrej Kosmrlj,et al.  How a protein searches for its site on DNA: the mechanism of facilitated diffusion , 2009 .

[40]  D. A. Mcquarrie Stochastic approach to chemical kinetics , 1967, Journal of Applied Probability.

[41]  M. E. Muller Some Continuous Monte Carlo Methods for the Dirichlet Problem , 1956 .

[42]  T. Elston,et al.  A robust numerical algorithm for studying biomolecular transport processes. , 2003, Journal of theoretical biology.

[43]  A. Polyanin Handbook of Linear Partial Differential Equations for Engineers and Scientists , 2001 .

[44]  J. Ellenberg,et al.  The quantitative proteome of a human cell line , 2011, Molecular systems biology.

[45]  A. Riggs,et al.  The lac repressor-operator interaction. 3. Kinetic studies. , 1970, Journal of molecular biology.

[46]  Linda R. Petzold,et al.  Accuracy limitations and the measurement of errors in the stochastic simulation of chemically reacting systems , 2006, J. Comput. Phys..

[47]  Heiko Rieger,et al.  Efficient kinetic Monte Carlo method for reaction-diffusion problems with spatially varying annihilation rates , 2012, J. Comput. Phys..

[48]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[49]  N. Shigesada,et al.  Theory of Bimolecular Reaction Processes in Liquids , 1967 .

[50]  Samuel A. Isaacson,et al.  Incorporating Diffusion in Complex Geometries into Stochastic Chemical Kinetics Simulations , 2006, SIAM J. Sci. Comput..

[51]  Paul J Atzberger,et al.  A Brownian Dynamics Model of Kinesin in Three Dimensions Incorporating the Force-Extension Profile of the Coiled-Coil Cargo Tether , 2006, Bulletin of mathematical biology.

[52]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[53]  P. R. ten Wolde,et al.  Spatio-temporal correlations can drastically change the response of a MAPK pathway , 2009, Proceedings of the National Academy of Sciences.

[54]  M. Kalos,et al.  First-passage Monte Carlo algorithm: diffusion without all the hops. , 2006, Physical review letters.

[55]  Jaap A. Kaandorp,et al.  Computational methods for diffusion-influenced biochemical reactions , 2007, Bioinform..

[56]  M. Kalos,et al.  First-passage kinetic Monte Carlo method. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  L. Mirny,et al.  Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. , 2004, Biophysical journal.

[58]  R. Erban,et al.  Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions , 2009, Physical biology.

[59]  D. Dubnau,et al.  Noise in Gene Expression Determines Cell Fate in Bacillus subtilis , 2007, Science.

[60]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[61]  Charles S. Peskin,et al.  The influence of volume exclusion by chromatin on the time required to find specific DNA binding sites by diffusion , 2011, Proceedings of the National Academy of Sciences.

[62]  Nobuhiro Kawatsuki Summer School 2004 , 2004 .

[63]  Ned S Wingreen,et al.  Responding to chemical gradients: bacterial chemotaxis. , 2012, Current opinion in cell biology.

[64]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[65]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[66]  Thomas R. Sokolowski,et al.  Green’s Function Reaction Dynamics—An Exact and Efficient Way To simulate Intracellular Pattern Formation , 2010 .

[67]  Aleksandar Donev,et al.  A First-Passage Kinetic Monte Carlo algorithm for complex diffusion-reaction systems , 2009, J. Comput. Phys..

[68]  Andreas Hellander,et al.  Simulation of Stochastic Reaction-Diffusion Processes on Unstructured Meshes , 2008, SIAM J. Sci. Comput..

[69]  C S Peskin,et al.  Coordinated hydrolysis explains the mechanical behavior of kinesin. , 1995, Biophysical journal.

[70]  Boris N. Kholodenko,et al.  Signalling ballet in space and time , 2010, Nature Reviews Molecular Cell Biology.

[71]  Eric C Greene,et al.  Visualizing one-dimensional diffusion of proteins along DNA , 2008, Nature Structural &Molecular Biology.

[72]  V. Walsh Models and Theory , 1987 .

[73]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[74]  M. Doi Stochastic theory of diffusion-controlled reaction , 1976 .

[75]  A. Grosberg,et al.  How proteins search for their specific sites on DNA: the role of DNA conformation. , 2006, Biophysical journal.

[76]  K. McNeil,et al.  Correlations in stochastic theories of chemical reactions , 1976 .