Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo

Abstract General methods are provided for analyzing the convergence of discrete-time, general state-space Markov chains, such as those used in stochastic simulation algorithms including the Gibbs sampler. The methods provide rigorous, a priori bounds on how long these simulations should be run to give satisfactory results. Results are applied to two models of the Gibbs sampler: a bivariate normal model, and a hierarchical Poisson model (with gamma conditionals). The methods use the notion of minorization conditions for Markov chains.

[1]  X. Ren,et al.  Mathematics , 1935, Nature.

[2]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[3]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[4]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[5]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[6]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[7]  J. Pitman On coupling of Markov chains , 1976 .

[8]  K. Athreya,et al.  Limit theorems for semi-Markov processes , 1978, Bulletin of the Australian Mathematical Society.

[9]  P. Ney,et al.  Limit Theorems for Semi-Markov Processes and Renewal Theory for Markov Chains , 1978 .

[10]  K. Athreya,et al.  A New Approach to the Limit Theory of Recurrent Markov Chains , 1978 .

[11]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  E. Nummelin General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .

[13]  E. Nummelin General irreducible Markov chains and non-negative operators: Embedded renewal processes , 1984 .

[14]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[15]  A. O'Hagan,et al.  The Calculation of Posterior Distributions by Data Augmentation: Comment , 1987 .

[16]  D. Gaver,et al.  Robust empirical bayes analyses of event rates , 1987 .

[17]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[18]  P. Diaconis Group representations in probability and statistics , 1988 .

[19]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[20]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[21]  Y. Amit On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions , 1991 .

[22]  U. Grenander,et al.  Comparing sweep strategies for stochastic relaxation , 1991 .

[23]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[24]  B. Carlin,et al.  On the Convergence of Successive Substitution Sampling , 1992 .

[25]  T. Lindvall Lectures on the Coupling Method , 1992 .

[26]  P. Diaconis,et al.  Eigen Analysis for Some Examples of the Metropolis Algorithm , 1992 .

[27]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[28]  C. Hwang,et al.  Optimal Spectral Structure of Reversible Stochastic Matrices, Monte Carlo Methods and the Simulation of Markov Random Fields , 1992 .

[29]  P. Matthews A slowly mixing Markov chain with implications for Gibbs sampling , 1993 .

[30]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[31]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[32]  J. Rosenthal Rates of Convergence for Data Augmentation on Finite Sample Spaces , 1993 .

[33]  Nicholas G. Polson,et al.  On the Geometric Convergence of the Gibbs Sampler , 1994 .

[34]  Nicholas G. Polson,et al.  Sampling from log-concave distributions , 1994 .

[35]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[36]  J. Rosenthal RATES OF CONVERGENCE FOR GIBBS SAMPLING FOR VARIANCE COMPONENT MODELS , 1995 .

[37]  Bin Yu,et al.  Regeneration in Markov chain samplers , 1995 .

[38]  J. Rosenthal,et al.  Rates of convergence for everywhere-positive Markov chains , 1995 .

[39]  Jeffrey S. Rosenthal,et al.  RATES OF CONVERGENCE FOR EVERYWHERE-POSITIVE MARKOV , 1995 .

[40]  Joong-Kweon Sohn,et al.  Convergence Diagnostics for the Gibbs Sampler , 1996 .

[41]  Y. Amit Convergence properties of the Gibbs sampler for perturbations of Gaussians , 1996 .