New Horizons for Conventional Lithium Ion Battery Technology.

Secondary lithium ion battery technology has made deliberate, incremental improvements over the past four decades, providing sufficient energy densities to sustain a significant mobile electronic device industry. Because current battery systems provide ∼100-150 km of driving distance per charge, ∼5-fold improvements are required to fully compete with internal combustion engines that provide >500 km range per tank. Despite expected improvements, the authors believe that lithium ion batteries are unlikely to replace combustion engines in fully electric vehicles. However, high fidelity and safe Li ion batteries can be used in full EVs plus range extenders (e.g., metal air batteries, generators with ICE or gas turbines). This perspective article describes advanced materials and directions that can take this technology further in terms of energy density, and aims at delineating realistic horizons for the next generations of Li ion batteries. This article concentrates on Li intercalation and Li alloying electrodes, relevant to the term Li ion batteries.

[1]  Kristina Edström,et al.  A neutron diffraction cell for studying lithium-insertion processes in electrode materials , 1998 .

[2]  Yang-Kook Sun,et al.  Progress in High-Capacity Core-Shell Cathode Materials for Rechargeable Lithium Batteries. , 2014, The journal of physical chemistry letters.

[3]  Dominique Guyomard,et al.  The Li1+xMn2O4/C rocking-chair system: a review , 1993 .

[4]  Doron Aurbach,et al.  On the Surface Chemistry of LiMO2 Cathode Materials (M = [ MnNi ] and [MnNiCo]): Electrochemical, Spectroscopic, and Calorimetric Studies , 2010 .

[5]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[6]  Stephen J. Harris,et al.  Measurement of three-dimensional microstructure in a LiCoO2 positive electrode , 2011 .

[7]  Doron Aurbach,et al.  Behavior of Graphite Electrodes in Solutions Based on Ionic Liquids in In Situ Raman Studies , 2008 .

[8]  Jun Liu,et al.  In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities , 2010 .

[9]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[10]  Doron Aurbach,et al.  LiMn0.8Fe0.2PO4/Li4Ti5O12, a Possible Li-Ion Battery System for Load-Leveling Application , 2013 .

[11]  Mi Hyung Kim,et al.  Evaluation of food waste disposal options in terms of global warming and energy recovery: Korea , 2013, International Journal of Energy and Environmental Engineering.

[12]  Doron Aurbach,et al.  Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy , 2010 .

[13]  Martha Schreiber,et al.  Current Collectors for Positive Electrodes of Lithium-Based Batteries , 2005 .

[14]  Tingfeng Yi,et al.  Recent development and application of Li4Ti5O12 as anode material of lithium ion battery , 2010 .

[15]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[16]  Haijun Yu,et al.  High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries. , 2013, The journal of physical chemistry letters.

[17]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[18]  Doron Aurbach,et al.  Rechargeable lithiated silicon–sulfur (SLS) battery prototypes , 2012 .

[19]  D. Aurbach,et al.  The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS , 2001 .

[20]  P. Balbuena,et al.  Lithium-ion batteries : solid-electrolyte interphase , 2004 .

[21]  Doron Aurbach,et al.  A short review on surface chemical aspects of Li batteries: A key for a good performance , 2009 .

[22]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[23]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[24]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[25]  Doron Aurbach,et al.  The use of in situ techniques in R&D of Li and Mg rechargeable batteries , 2011 .

[26]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[27]  Kunio Nishimura,et al.  Recent development of carbon materials for Li ion batteries , 2000 .

[28]  Gaojun Wang,et al.  An aqueous rechargeable lithium battery with good cycling performance. , 2007, Angewandte Chemie.

[29]  Brian C. Olsen,et al.  Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites , 2014 .

[30]  Doron Aurbach,et al.  Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell , 1995 .

[31]  Wei-Jun Zhang Structure and performance of LiFePO 4 cathode materials: A review , 2011 .

[32]  Laure Monconduit,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions (Adv. Mater. 35/2010) , 2010 .

[33]  Ying Wang,et al.  Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation , 2006 .

[34]  Martin Winter,et al.  Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability , 2008 .

[35]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[36]  Y. Ein-Elia,et al.  Low temperature performance of copper / nickel modified LiMn 2 O 4 spinels , 2005 .

[37]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[38]  Doron Aurbach,et al.  Revisiting LiClO4 as an Electrolyte for Rechargeable Lithium-Ion Batteries , 2010 .

[39]  Liu Zhou,et al.  Improving the Performance of Graphite/ LiNi0.5Mn1.5O4 Cells at High Voltage and Elevated Temperature with Added Lithium Bis(oxalato) Borate (LiBOB) , 2013 .

[40]  Doron Aurbach,et al.  Electrolyte solution for the improved cycling performance of LiCoPO4/C composite cathodes , 2013 .

[41]  C. Grey,et al.  In situ NMR of lithium ion batteries: bulk susceptibility effects and practical considerations. , 2012, Solid state nuclear magnetic resonance.

[42]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[43]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[44]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[45]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[46]  Takashi Sukegawa,et al.  Redox equilibrium of a zwitterionic radical polymer in a non-aqueous electrolyte as a novel Li+ host material in a Li-ion battery , 2013 .

[47]  Wei-Jun Zhang,et al.  Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries , 2011 .

[48]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[49]  Sanjeev Mukerjee,et al.  LOW TEMPERATURE PERFORMANCE OF COPPER/NICKEL MODIFIED LIMN2O4 SPINELS , 2005 .

[50]  Steen B. Schougaard,et al.  Conducting‐Polymer/Iron‐Redox‐ Couple Composite Cathodes for Lithium Secondary Batteries , 2007 .

[51]  Petr Novák,et al.  Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries , 2000 .

[52]  Doron Aurbach,et al.  LiMn(0.8)Fe(0.2)PO(4): an advanced cathode material for rechargeable lithium batteries. , 2009, Angewandte Chemie.

[53]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[54]  Nathalie Pereira,et al.  Carbon-Metal Fluoride Nanocomposites Structure and Electrochemistry of FeF3: C , 2003 .

[55]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[56]  T. Sheela,et al.  Conversion reactions: a new pathway to realise energy in lithium-ion battery—review , 2009 .

[57]  Jiajun Chen,et al.  Recent Progress in Advanced Materials for Lithium Ion Batteries , 2013, Materials.

[58]  John B. Goodenough,et al.  The Li‐Ion Rechargeable Battery: A Perspective , 2013 .

[59]  Doron Aurbach,et al.  Cycling and storage performance at elevated temperatures of LiNi0.5Mn1.5O4 positive electrodes for advanced 5 V Li-ion batteries , 2004 .

[60]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[61]  James McBreen,et al.  The application of synchrotron techniques to the study of lithium-ion batteries , 2009 .

[62]  J. Dahn,et al.  High precision coulometry studies of single-phase layered compositions in the Li-Mn-Ni-O system , 2014 .

[63]  Yi Cui,et al.  Structural and electrochemical study of the reaction of lithium with silicon nanowires , 2009 .

[64]  Doron Aurbach,et al.  An Advanced Lithium Ion Battery Based on Amorphous Silicon Film Anode and Integrated xLi2MnO3.(1-x)LiNiyMnzCo1-y-zO2 Cathode , 2013 .

[65]  Yun Jung Lee,et al.  Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[66]  Doron Aurbach,et al.  Comparing the Behavior of Nano- and Microsized Particles of LiMn1.5Ni0.5O4 Spinel as Cathode Materials for Li-Ion Batteries , 2007 .

[67]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[68]  Raouf O. Loutfy,et al.  Comparative studies of MCMB and CC composite as anodes for lithium-ion battery systems , 2003 .

[69]  Eric Bousquet,et al.  LiMSO(4)F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope. , 2010, Physical chemistry chemical physics : PCCP.

[70]  Doron Aurbach,et al.  Structural and Electrochemical Evidence of Layered to Spinel Phase Transformation of Li and Mn Rich Layered Cathode Materials of the Formulae xLi[Li1/3Mn2/3]O2.(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.2, 0.4, 0.6) upon Cycling , 2014 .

[71]  Jingying Xie,et al.  Si/C composites for high capacity lithium storage materials , 2003 .

[72]  Doron Aurbach,et al.  The Effect of ZnO and MgO Coatings by a Sono-Chemical Method, on the Stability of LiMn1.5Ni0.5O4 as a Cathode Material for 5 V Li-Ion Batteries , 2012 .

[73]  Doron Aurbach,et al.  A new advanced lithium ion battery: Combination of high performance amorphous columnar silicon thin film anode, 5 V LiNi0.5Mn1.5O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution , 2013 .

[74]  T. J. Mller Lithium ion battery automotive applications and requirements , 2002, Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No.02TH8576).

[75]  Doron Aurbach,et al.  Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[76]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[77]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[78]  Doron Aurbach,et al.  Synthesis of Integrated Cathode Materials xLi2MnO3⋅ ( 1 − x ) LiMn1 / 3Ni1 / 3Co1 / 3O2 ( x = 0.3 , 0.5 , 0.7 ) and Studies of Their Electrochemical Behavior , 2010 .

[79]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[80]  Vilas G. Pol,et al.  Testing Carbon-Coated VOx Prepared via Reaction under Autogenic Pressure at Elevated Temperature as Li-Insertion Materials. , 2006 .

[81]  Y. Meng,et al.  Recent advances in first principles computational research of cathode materials for lithium-ion batteries. , 2013, Accounts of chemical research.

[82]  Doron Aurbach,et al.  Studies of Li and Mn-Rich Lix[MnNiCo]O2 Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating , 2013 .

[83]  Dongmin Im,et al.  Reaction mechanism and electrochemical characterization of a Sn–Co–C composite anode for Li-ion batteries , 2008 .

[84]  Yanhui Xu,et al.  Lithium ion intercalation mechanism for LiCoPO4 electrode , 2013 .

[85]  Dongsheng Lu,et al.  Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries , 2010 .

[86]  Doron Aurbach,et al.  Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy , 2000 .

[87]  Linda F. Nazar,et al.  On the Stability of LiFePO4 Olivine Cathodes under Various Conditions (Electrolyte Solutions, Temperatures) , 2007 .

[88]  N. Sato Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles , 2002 .

[89]  Daniel Sharon,et al.  On the challenge of developing advanced technologies for electrochemical energy storage and conversion , 2014 .

[90]  Doron Aurbach,et al.  Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[91]  Michel Trudeau,et al.  In situ high-resolution transmission electron microscopy synthesis observation of nanostructured carbon coated LiFePO4 , 2011 .

[92]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .