Comparison principles and applications to mathematical modelling of vegetal meta-communities
暂无分享,去创建一个
[1] D. Vere-Jones. Markov Chains , 1972, Nature.
[2] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[3] Jorge Bustamante,et al. Bernstein Operators and Their Properties , 2017 .
[4] John Wakeley,et al. The many-demes limit for selection and drift in a subdivided population. , 2004, Theoretical population biology.
[5] O. A. Ladyzhenskai︠a︡,et al. Linear and Quasi-linear Equations of Parabolic Type , 1995 .
[6] G. M. Lieberman. SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .
[7] Djalil CHAFAÏ,et al. Recueil de modèles aléatoires , 2016 .
[8] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[9] Pierre Priouret,et al. Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum , 1968 .
[10] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[11] Stewart N. Ethier,et al. Diffusion approximations of Markov chains with two time scales and applications to population genetics, II , 1980 .
[12] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[13] Sylvie Méléard. Modèles aléatoires en écologie et évolution , 2016 .
[14] A Stochastic Model for Growing Sandpiles and its Continuum Limit , 1998 .
[15] D. W. Stroock,et al. Multidimensional Diffusion Processes , 1979 .
[16] S. Ethier. A class of degenerate diffusion processes occurring in population genetics , 1976 .