Integrative genomic analyses reveal clinically relevant long non-coding RNA in human cancer

Despite growing appreciation of the importance of long noncoding RNAs (lncRNAs) in normal physiology and disease, our knowledge of cancer-related lncRNAs remains limited. By repurposing microarray probes, we constructed expression profiles of 10,207 lncRNA genes in approximately 1,300 tumors over four different cancer types. Through integrative analysis of the lncRNA expression profiles with clinical outcome and somatic copy-number alterations, we identified lncRNAs that are associated with cancer subtypes and clinical prognosis and predicted those that are potential drivers of cancer progression. We validated our predictions by experimentally confirming prostate cancer cell growth dependence on two newly identified lncRNAs. Our analysis provides a resource of clinically relevant lncRNAs for the development of lncRNA biomarkers and the identification of lncRNA therapeutic targets. It also demonstrates the power of integrating publically available genomic data sets and clinical information for discovering disease-associated lncRNAs.

[1]  Toshiro K. Ohsumi,et al.  Genome-wide identification of polycomb-associated RNAs by RIP-seq. , 2010, Molecular cell.

[2]  S. Miyano,et al.  Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. , 2011, Cancer research.

[3]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[4]  A. Butte,et al.  Leveraging models of cell regulation and GWAS data in integrative network-based association studies , 2012, Nature Genetics.

[5]  Wei Zhang,et al.  Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients , 2004, Oncogene.

[6]  Shizuka Uchida,et al.  Noncoder: a web interface for exon array-based detection of long non-coding RNAs , 2012, Nucleic acids research.

[7]  D. Levy,et al.  A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease , 2012, BMC Medical Genomics.

[8]  L. Kemény,et al.  The anti‐apoptotic protein G1P3 is overexpressed in psoriasis and regulated by the non‐coding RNA, PRINS , 2010, Experimental dermatology.

[9]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[10]  Howard Y. Chang,et al.  Long noncoding RNAs and human disease. , 2011, Trends in cell biology.

[11]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.

[12]  John N. Hutchinson,et al.  An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. , 2009, Molecular cell.

[13]  J. Uhm Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2009 .

[14]  John D. Storey,et al.  Human transcriptome array for high-throughput clinical studies , 2011, Proceedings of the National Academy of Sciences.

[15]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature Biotechnology.

[16]  Wing Hung Wong,et al.  SeqMap: mapping massive amount of oligonucleotides to the genome , 2008, Bioinform..

[17]  Manolis Kellis,et al.  PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions , 2011, Bioinform..

[18]  R. Weiss,et al.  EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. , 2007, Blood.

[19]  Leonard Lipovich,et al.  Mining Affymetrix microarray data for long non‐coding RNAs: altered expression in the nucleus accumbens of heroin abusers , 2011, Journal of neurochemistry.

[20]  D. Pe’er,et al.  An Integrated Approach to Uncover Drivers of Cancer , 2010, Cell.

[21]  J. Rinn,et al.  Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression , 2009, Proceedings of the National Academy of Sciences.

[22]  S. Gabriel,et al.  Advances in understanding cancer genomes through second-generation sequencing , 2010, Nature Reviews Genetics.

[23]  J. Squire,et al.  Identification of a novel gene NCRMS on chromosome 12q21 with differential expression between Rhabdomyosarcoma subtypes , 2002, Oncogene.

[24]  N. Nomura,et al.  Complete sequencing and characterization of 21,243 full-length human cDNAs , 2004, Nature Genetics.

[25]  A. Syvänen Accessing genetic variation: genotyping single nucleotide polymorphisms , 2001, Nature Reviews Genetics.

[26]  Gautier Koscielny,et al.  Ensembl 2012 , 2011, Nucleic Acids Res..

[27]  S. Blackshaw,et al.  articleThe long noncoding RNA RNCR 2 directs mouse retinal cell specification , 2010 .

[28]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[29]  Junhee Seok,et al.  JETTA: junction and exon toolkits for transcriptome analysis , 2012, Bioinform..

[30]  N. Friedman,et al.  Comprehensive comparative analysis of strand-specific RNA sequencing methods , 2010, Nature Methods.

[31]  Michael F. Lin,et al.  Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.

[32]  Howard Y. Chang,et al.  A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression , 2011, Nature.

[33]  C. Sander,et al.  Functional Copy-Number Alterations in Cancer , 2008, PloS one.

[34]  S. Sunkin,et al.  Specific expression of long noncoding RNAs in the mouse brain , 2008, Proceedings of the National Academy of Sciences.

[35]  M. Mourtada-Maarabouni,et al.  GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer , 2009, Oncogene.

[36]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[37]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[38]  S. Srivastava,et al.  Prostate cancer: Diagnostic performance of the PCA3 urine test , 2011, Nature Reviews Urology.

[39]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature biotechnology.

[40]  D. S. Gross,et al.  Chromatin , 2015, Current Biology.

[41]  E. Lander,et al.  Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma , 2007, Proceedings of the National Academy of Sciences.

[42]  Howard Y. Chang,et al.  Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis , 2010, Nature.

[43]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[44]  C. Sander,et al.  Integrative genomic profiling of human prostate cancer. , 2010, Cancer cell.

[45]  Howard Y. Chang,et al.  Suppression of progenitor differentiation requires the long noncoding RNA ANCR. , 2012, Genes & development.

[46]  Yi Xing,et al.  Exon arrays provide accurate assessments of gene expression , 2007, Genome Biology.

[47]  Shuli Kang,et al.  Large-scale prediction of long non-coding RNA functions in a coding–non-coding gene co-expression network , 2011, Nucleic acids research.

[48]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[49]  Yusuke Nakamura,et al.  Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction , 2006, Journal of Human Genetics.

[50]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[51]  T. Golub,et al.  Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma , 2005, Nature.

[52]  Michael Weber,et al.  H19 Antisense RNA Can Up-Regulate Igf2 Transcription by Activation of a Novel Promoter in Mouse Myoblasts , 2012, PloS one.

[53]  D. Pe’er,et al.  Principles and Strategies for Developing Network Models in Cancer , 2011, Cell.

[54]  Rory Johnson Long non-coding RNAs in Huntington's disease neurodegeneration , 2012, Neurobiology of Disease.

[55]  Albert J. Vilella,et al.  A high-resolution map of human evolutionary constraint using 29 mammals , 2011, Nature.

[56]  Anderson Chun On Tsang,et al.  Long non-coding RNA expression profiles predict clinical phenotypes in glioma , 2012, Neurobiology of Disease.

[57]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[58]  David Haussler,et al.  The UCSC genome browser and associated tools , 2012, Briefings Bioinform..

[59]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[60]  John T. Wei,et al.  Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression , 2011, Nature Biotechnology.

[61]  A. Chinnaiyan,et al.  The emergence of lncRNAs in cancer biology. , 2011, Cancer discovery.