Modeling non-eroding perforation of an oblique aluminum target using the Eulerian CTH hydrocode
暂无分享,去创建一个
[1] P. S. Bulson,et al. Structures Under Shock and Impact , 1994 .
[2] J. W. Shaner,et al. High-pressure science and technology--1993 , 1994 .
[3] G. R. Johnson,et al. Conversion of 3D distorted elements into meshless particles during dynamic deformation , 2003 .
[4] S. A. Silling,et al. Eulerian simulation of the perforation of aluminum plates by nondeforming projectiles , 1992 .
[5] D. Scheffler. Modeling the Effect of Penetrator Nose Shape on Threshold Velocity for Thick Aluminum Targets. , 1997 .
[6] T. L. Warren,et al. Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts , 1996 .
[7] Jonas A. Zukas,et al. Introduction to Hydrocodes , 2004 .
[8] D. Scheffler,et al. Target Strength Effects On The PredictedThreshold Velocity For Hemi- And Ogival-nosePenetrators Perforating Finite AluminumTargets , 1970 .
[9] J. M. McGlaun,et al. CTH: A three-dimensional shock wave physics code , 1990 .
[10] David L. Littlefield,et al. The penetration of steel targets finite in radial extent , 1997 .
[11] E. S. Hertel,et al. Scalable computations in penetration mechanics , 1998 .
[12] E. A. Murray,et al. Quasi-Static Compression Stress-Strain Curves--IV, 2024-T3510 and 6061-T6 Aluminum Alloys , 1976 .
[13] G. R. Johnson,et al. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .
[14] P. Yarrington,et al. CTH analyses of steel rod penetration into aluminum and concrete targets with comparisons to experimental data , 1994 .
[15] Jonas A. Zukas,et al. Practical aspects of numerical simulation of dynamic events: material interfaces , 2000 .
[16] M. J. Forrestal,et al. Perforation of aluminum armor plates with conical-nose projectiles , 1990 .