An Optimal-Time Construction of Euclidean Sparse Spanners with Tiny Diameter

In STOC'95 \cite{ADMSS95} Arya et al.\ showed that for any set of $n$ points in $\mathbb R^d$, a $(1+\epsilon)$-spanner with diameter at most 2 (respectively, 3) and $O(n \log n)$ edges (resp., $O(n \log \log n)$ edges) can be built in $O(n \log n)$ time. Moreover, it was shown in \cite{ADMSS95,NS07} that for any $k \ge 4$, one can build in $O(n (\log n) 2^k \alpha_k(n))$ time a $(1+\epsilon)$-spanner with diameter at most $2k$ and $O(n 2^k \alpha_k(n))$ edges. The function $\alpha_k$ is the inverse of a certain function at the $\lfloor k/2 \rfloor$th level of the primitive recursive hierarchy, where $\alpha_0(n) = \lceil n/2 \rceil, \alpha_1(n) = \left\lceil \sqrt{n} \right\rceil, \alpha_2(n) = \lceil \log{n} \rceil, \alpha_3(n) = \lceil \log\log{n} \rceil, \alpha_4(n) = \log^* n$, \ldots, etc. It is also known \cite{NS07} that if one allows quadratic time then these bounds can be improved. Specifically, for any $k \ge 4$, a $(1+\epsilon)$-spanner with diameter at most $k$ and $O(n k \alpha_k(n))$ edges can be constructed in $O(n^2)$ time \cite{NS07}. A major open problem in this area is whether one can construct within time $O(n \log n + n k \alpha_k(n))$ a $(1+\epsilon)$-spanner with diameter at most $k$ and $O(n k \alpha_k(n))$ edges. In this paper we answer this question in the affirmative. Moreover, in fact, we provide a stronger result. Specifically, we show that for any $k \ge 4$, a $(1+\epsilon)$-spanner with diameter at most $k$ and $O(n \alpha_k(n))$ edges can be built in optimal time $O(n \log n)$. The tradeoff between the diameter and number of edges of our spanners is tight up to constant factors in the entire range of parameters.

[1]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[2]  Andrew Chi-Chih Yao,et al.  Space-time tradeoff for answering range queries (Extended Abstract) , 1982, STOC '82.

[3]  Joachim Gudmundsson,et al.  Fast Pruning of Geometric Spanners , 2005, STACS.

[4]  Erik D. Demaine,et al.  Tight bounds for the partial-sums problem , 2004, SODA '04.

[5]  Pankaj K. Agarwal,et al.  Lower bound for sparse Euclidean spanners , 2005, SODA '05.

[6]  David Peleg,et al.  Sparse communication networks and efficient routing in the plane , 2001, Distributed Computing.

[7]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[8]  Joachim Gudmundsson,et al.  Approximate distance oracles for geometric spanners , 2008, TALG.

[9]  Robert E. Tarjan,et al.  Applications of Path Compression on Balanced Trees , 1979, JACM.

[10]  Bernard Chazelle,et al.  The complexity of computing partial sums off-line , 1991, Int. J. Comput. Geom. Appl..

[11]  Paul Chew,et al.  There is a planar graph almost as good as the complete graph , 1986, SCG '86.

[12]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..

[13]  Mikkel Thorup,et al.  Shortcutting Planar Digraphs , 1995, Combinatorics, Probability and Computing.

[14]  Michiel H. M. Smid,et al.  Lower bounds for computing geometric spanners and approximate shortest paths , 1996, Discret. Appl. Math..

[15]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[16]  Michiel H. M. Smid,et al.  Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[17]  Giri Narasimhan,et al.  A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.

[18]  Mikkel Thorup,et al.  On Shortcutting Digraphs , 1992, WG.

[19]  Joachim Gudmundsson,et al.  Approximate distance oracles for geometric graphs , 2002, SODA '02.

[20]  Ittai Abraham,et al.  Compact routing on euclidian metrics , 2004, PODC '04.

[21]  Michael Elkin,et al.  Shallow-Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners , 2008, FOCS.

[22]  Carl Gutwin,et al.  Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..

[23]  David Peleg,et al.  An approximation algorithm for minimum-cost network design , 1994, Robust Communication Networks: Interconnection and Survivability.

[24]  Michiel H. M. Smid,et al.  Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.

[25]  Satish Rao,et al.  Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.

[26]  Nicola Santoro,et al.  Trade-Offs in Non-Reversing Diameter , 1994, Nord. J. Comput..

[27]  Han La Poutré New Techniques for the Union-Find Problems , 1990, SODA.

[28]  Bernard Chazelle Computing on a Free Tree via Complexity-Preserving Mappings , 1984, FOCS.

[29]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[30]  Kyomin Jung,et al.  Transitive-Closure Spanners , 2008, SIAM J. Comput..

[31]  S. Rao Kosaraju,et al.  Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.

[32]  Anupam Gupta,et al.  Small Hop-diameter Sparse Spanners for Doubling Metrics , 2006, SODA '06.

[33]  Mikkel Thorup,et al.  Parallel Shortcutting of Rooted Trees , 1997, J. Algorithms.

[34]  Giri Narasimhan,et al.  Efficient algorithms for constructing fault-tolerant geometric spanners , 1998, STOC '98.