暂无分享,去创建一个
[1] Michiel H. M. Smid,et al. Euclidean spanners: short, thin, and lanky , 1995, STOC '95.
[2] Andrew Chi-Chih Yao,et al. Space-time tradeoff for answering range queries (Extended Abstract) , 1982, STOC '82.
[3] Joachim Gudmundsson,et al. Fast Pruning of Geometric Spanners , 2005, STACS.
[4] Erik D. Demaine,et al. Tight bounds for the partial-sums problem , 2004, SODA '04.
[5] Pankaj K. Agarwal,et al. Lower bound for sparse Euclidean spanners , 2005, SODA '05.
[6] David Peleg,et al. Sparse communication networks and efficient routing in the plane , 2001, Distributed Computing.
[7] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[8] Joachim Gudmundsson,et al. Approximate distance oracles for geometric spanners , 2008, TALG.
[9] Robert E. Tarjan,et al. Applications of Path Compression on Balanced Trees , 1979, JACM.
[10] Bernard Chazelle,et al. The complexity of computing partial sums off-line , 1991, Int. J. Comput. Geom. Appl..
[11] Paul Chew,et al. There is a planar graph almost as good as the complete graph , 1986, SCG '86.
[12] Giri Narasimhan,et al. A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..
[13] Mikkel Thorup,et al. Shortcutting Planar Digraphs , 1995, Combinatorics, Probability and Computing.
[14] Michiel H. M. Smid,et al. Lower bounds for computing geometric spanners and approximate shortest paths , 1996, Discret. Appl. Math..
[15] David P. Dobkin,et al. On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..
[16] Michiel H. M. Smid,et al. Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[17] Giri Narasimhan,et al. A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.
[18] Mikkel Thorup,et al. On Shortcutting Digraphs , 1992, WG.
[19] Joachim Gudmundsson,et al. Approximate distance oracles for geometric graphs , 2002, SODA '02.
[20] Ittai Abraham,et al. Compact routing on euclidian metrics , 2004, PODC '04.
[21] Michael Elkin,et al. Shallow-Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners , 2008, FOCS.
[22] Carl Gutwin,et al. Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..
[23] David Peleg,et al. An approximation algorithm for minimum-cost network design , 1994, Robust Communication Networks: Interconnection and Survivability.
[24] Michiel H. M. Smid,et al. Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.
[25] Satish Rao,et al. Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.
[26] Nicola Santoro,et al. Trade-Offs in Non-Reversing Diameter , 1994, Nord. J. Comput..
[27] Han La Poutré. New Techniques for the Union-Find Problems , 1990, SODA.
[28] Bernard Chazelle. Computing on a Free Tree via Complexity-Preserving Mappings , 1984, FOCS.
[29] Robert E. Tarjan,et al. Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.
[30] Kyomin Jung,et al. Transitive-Closure Spanners , 2008, SIAM J. Comput..
[31] S. Rao Kosaraju,et al. Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.
[32] Anupam Gupta,et al. Small Hop-diameter Sparse Spanners for Doubling Metrics , 2006, SODA '06.
[33] Mikkel Thorup,et al. Parallel Shortcutting of Rooted Trees , 1997, J. Algorithms.
[34] Giri Narasimhan,et al. Efficient algorithms for constructing fault-tolerant geometric spanners , 1998, STOC '98.