Time dependence of stimulation/recording-artifact transfer function estimates for neural interface systems

A continuous feedback-enabled control system requires simultaneous measurements of the system states and generation of a control output. In neural systems, electric stimulation used to interact with neural activity also creates additional electrical potential variations at measurement points used to monitor neural activity. This stimulus artifact confounds recording of underlying neural activity through the addition of both common mode and differential potentials. We model this artifact as a linearly filtered version of the applied electrical current. We demonstrate a method to determine the properties of this filter using multi-taper techniques for chronically implanted animals stimulated with polarizing low-frequency electric fields (PLEF). When measured repeatedly in chronic experiments with continuous recordings, we observe slow changes of up to 50% transfer function magnitude (figure 1). Such changes reflect a combination bulk impedance changes of the tissue and changes in electrode interface properties. These variations need to be tracked and accommodated for successful chronic continuous feedback neural control systems.