Acute 4-nonylphenol toxicity changes the genomic expression profile of marine medaka fish, Oryzias javanicus

[1]  S. Yum,et al.  Transcriptional Changes Caused by Bisphenol A in Oryzias javanicus, a Fish Species Highly Adaptable to Environmental Salinity , 2014, Marine drugs.

[2]  S. Yum,et al.  Gene expression profile changes induced by acute toxicity of benzo[a]pyrene in marine medaka , 2013, Toxicology and Environmental Health Sciences.

[3]  S. Yum,et al.  Changes in gene expression profile due to acute toxicity of toxaphene in the marine medaka , 2013, Molecular & Cellular Toxicology.

[4]  H. Kitagawa,et al.  Chondroitin beta-1,4-N-acetylgalactosaminyltransferase-1 missense mutations are associated with neuropathies , 2011, Journal of Human Genetics.

[5]  R. L. Spehar,et al.  Comparative toxicity and bioconcentration of nonylphenol in freshwater organisms , 2010, Environmental toxicology and chemistry.

[6]  L. Cupples,et al.  Gene-nutrient interactions with dietary fat modulate the association between genetic variation of the ACSL1 gene and metabolic syndrome , 2010, Journal of Lipid Research.

[7]  Jianqi Yang,et al.  What Is the Metabolic Role of Phosphoenolpyruvate Carboxykinase?* , 2009, The Journal of Biological Chemistry.

[8]  F. Gage,et al.  Cdk5 Regulates Accurate Maturation of Newborn Granule Cells in the Adult Hippocampus , 2008, PLoS biology.

[9]  Xueping Chen,et al.  Choriogenin mRNA as a sensitive molecular biomarker for estrogenic chemicals in developing brackish medaka (Oryzias melastigma). , 2008, Ecotoxicology and environmental safety.

[10]  G. Hardiman,et al.  Variation of the genetic expression pattern after exposure to estradiol-17beta and 4-nonylphenol in male zebrafish (Danio rerio). , 2008, General and comparative endocrinology.

[11]  Anne Marie Vinggaard,et al.  Endocrine-Disrupting Potential of Bisphenol A, Bisphenol A Dimethacrylate, 4-n-Nonylphenol, and 4-n-Octylphenol in Vitro: New Data and a Brief Review , 2007, Environmental health perspectives.

[12]  A. Vétillard,et al.  Effects of 4-n-nonylphenol and tamoxifen on salmon gonadotropin-releasing hormone, estrogen receptor, and vitellogenin gene expression in juvenile rainbow trout. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[13]  H. Iwahashi,et al.  Expression analysis of sex-specific and 17beta-estradiol-responsive genes in the Japanese medaka, Oryzias latipes, using oligonucleotide microarrays. , 2006, Genomics.

[14]  R. Kong,et al.  Induction of hepatic choriogenin mRNA expression in male marine medaka: a highly sensitive biomarker for environmental estrogens. , 2006, Aquatic toxicology.

[15]  A. Arukwe,et al.  Transcriptional modulation of brain and hepatic estrogen receptor and P450arom isotypes in juvenile Atlantic salmon (Salmo salar) after waterborne exposure to the xenoestrogen, 4-nonylphenol. , 2006, Aquatic toxicology.

[16]  Daniel Schlenk,et al.  Evaluation of estrogenic activities of aquatic herbicides and surfactants using an rainbow trout vitellogenin assay. , 2005, Toxicological sciences : an official journal of the Society of Toxicology.

[17]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[18]  Y. Takei,et al.  Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[19]  Chulwoo Lee,et al.  Choriogenin mRNA induction in male medaka, Oryzias latipes as a biomarker of endocrine disruption. , 2002, Aquatic toxicology.

[20]  J. Kelso,et al.  Gene expression analysis of largemouth bass exposed to estradiol, nonylphenol, and p,p'-DDE. , 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[21]  F. Yadetie,et al.  Effects of 4-nonylphenol on gene expression of pituitary hormones in juvenile Atlantic salmon (Salmo salar). , 2002, Aquatic toxicology.

[22]  Koji Inoue,et al.  Diverse Adaptability in Oryzias Species to High Environmental Salinity , 2002, Zoological science.

[23]  S. Kashiwada,et al.  Fish test for endocrine-disruption and estimation of water quality of Japanese rivers. , 2002, Water research.

[24]  Klaus Guenther,et al.  Endocrine disrupting nonylphenols are ubiquitous in food. , 2002, Environmental science & technology.

[25]  D. Sheehan,et al.  Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. , 2001, The Biochemical journal.

[26]  Amy S. Lee,et al.  The glucose-regulated proteins: stress induction and clinical applications. , 2001, Trends in biochemical sciences.

[27]  A. Arukwe,et al.  In vivo modulation of nonylphenol-induced zonagenesis and vitellogenesis by the antiestrogen, 3,3'4,4'-tetrachlorobiphenyl (PCB-77) in juvenile fish. , 2001, Environmental toxicology and pharmacology.

[28]  A. Arukwe,et al.  Differential biomarker gene and protein expressions in nonylphenol and estradiol-17beta treated juvenile rainbow trout (Oncorhynchus mykiss). , 2001, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[29]  R. Pruell,et al.  Acute toxicity of para‐nonylphenol to saltwater animals , 2000 .

[30]  A. Heerschap,et al.  Defect in dimethylglycine dehydrogenase, a new inborn error of metabolism: NMR spectroscopy study. , 1999, Clinical chemistry.

[31]  M. Mann,et al.  The Exosome: A Conserved Eukaryotic RNA Processing Complex Containing Multiple 3′→5′ Exoribonucleases , 1997, Cell.

[32]  S. Yasumasu,et al.  Cloning of cDNA and estrogen-induced hepatic gene expression for choriogenin H, a precursor protein of the fish egg envelope (chorion). , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Gregg,et al.  Microsomal triglyceride transfer protein: a protein complex required for the assembly of lipoprotein particles. , 1995, Trends in cell biology.

[34]  R. Klausner,et al.  Molecular characterization of a second iron-responsive element binding protein, iron regulatory protein 2. Structure, function, and post-translational regulation. , 1994, The Journal of biological chemistry.

[35]  D. Tollervey,et al.  Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast , 1991, The Journal of cell biology.

[36]  K. Yoshimura Biodegradation and fish toxicity of nonionic surfactants , 1986 .

[37]  Hong-Seog Park,et al.  Changes in gene expression profile of medaka with acute toxicity of Arochlor 1260, a polychlorinated biphenyl mixture. , 2010, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[38]  류재천,et al.  Gene expression profile in iprobenfos exposed Medaka Fish by Microarray analysis , 2008 .

[39]  A. Arukwe,et al.  The xenoestrogen 4-nonylphenol modulates hepatic gene expression of pregnane X receptor, aryl hydrocarbon receptor, CYP3A and CYP1A1 in juvenile Atlantic salmon (Salmo salar). , 2006, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[40]  S. Oda,et al.  Expression profiles of 4-nonylphenol-exposed medaka (Oryzias latipes) analyzed with a 3.4 K microarray. , 2006, Marine environmental research.

[41]  K. Konstantinov,et al.  Galectin-3, a beta-galactoside-binding animal lectin, is a marker of anaplastic large-cell lymphoma. , 1996, The American journal of pathology.

[42]  T. Sasaki,et al.  Cloning of cDNAs for the precursor protein of a low-molecular-weight subunit of the inner layer of the egg envelope (chorion) of the fish Oryzias latipes. , 1995, Developmental biology.

[43]  A. Bergman,et al.  Bioaccumulation of 4-nonylphenol in marine animals--a re-evaluation. , 1990, Environmental pollution.