Hilbertian systems, analytic fuzzy tableaux and cut rule elimination in rational pavelka logic

In this paper a sound and complete tableau system for the Rational Pavelka Logic is introduced. The completeness is proved thanks to fuzzy hilbertian system formulated by Hajek. A fuzzy tableau cut rule is introduced but a cut elimination theorem is proved.

[1]  P. Hájek Fuzzy logic and arithmetical hierarchy , 1995 .

[2]  F. Ramsey The foundations of mathematics , 1932 .

[3]  R. Smullyan First-Order Logic , 1968 .

[4]  Wendy MacCaull Tableau method for residuated logic , 1996, Fuzzy Sets Syst..

[5]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[6]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[7]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[8]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[9]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[10]  Reiner Hähnle,et al.  Uniform Notation of Tableau Rules for Multiple-Valued Logics , 1991, ISMVL.

[11]  Reiner Hähnle,et al.  Automated deduction in multiple-valued logics , 1993, International series of monographs on computer science.

[12]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[13]  Walter Alexandre Carnielli,et al.  Systematization of finite many-valued logics through the method of tableaux , 1987, Journal of Symbolic Logic.

[14]  M. Fitting First-order logic and automated theorem proving (2nd ed.) , 1996 .

[15]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[16]  V. Novák,et al.  Mathematical Principles of Fuzzy Logic , 1999 .

[17]  John L. Bell,et al.  A course in mathematical logic , 1977 .