Guidelines for the design of (optimal) isothermal inactivation experiments.

[1]  Jeanne-Marie Membré,et al.  Evaluation of Multicriteria Decision Analysis Algorithms in Food Safety: A Case Study on Emerging Zoonoses Prioritization , 2019, Risk analysis : an official publication of the Society for Risk Analysis.

[2]  Asunción Iguaz,et al.  On the use of in-silico simulations to support experimental design: A case study in microbial inactivation of foods , 2019, PloS one.

[3]  Jose A. Egea,et al.  Tail or artefact? Illustration of the impact that uncertainty of the serial dilution and cell enumeration methods has on microbial inactivation. , 2019, Food research international.

[4]  Julio R. Banga,et al.  Input-Dependent Structural Identifiability of Nonlinear Systems , 2019, IEEE Control Systems Letters.

[5]  R. García-Gimeno,et al.  High hydrostatic pressure processing of sliced fermented sausages: A quantitative exposure assessment for Listeria monocytogenes , 2019, Innovative Food Science & Emerging Technologies.

[6]  Alejandro Fernández Villaverde,et al.  Observability and Structural Identifiability of Nonlinear Biological Systems , 2018, Complex..

[7]  M. Emelko,et al.  Learning Something From Nothing: The Critical Importance of Rethinking Microbial Non-detects , 2018, Front. Microbiol..

[8]  Jose A. Egea,et al.  Bioinactivation FE: A free web application for modelling isothermal and dynamic microbial inactivation. , 2018, Food research international.

[9]  Jose A. Egea,et al.  Optimal characterization of thermal microbial inactivation simulating non-isothermal processes. , 2018, Food research international.

[10]  M. Wells-Bennik,et al.  Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality. , 2018, Annual review of food science and technology.

[11]  Xiangzhong Xie,et al.  The Impact of Global Sensitivities and Design Measures in Model-Based Optimal Experimental Design , 2018 .

[12]  Anthony Hardy,et al.  Guidance on Uncertainty Analysis in Scientific Assessments , 2018, EFSA journal. European Food Safety Authority.

[13]  Jose A. Egea,et al.  Quality Changes and Shelf-Life Prediction of a Fresh Fruit and Vegetable Purple Smoothie , 2017, Food and Bioprocess Technology.

[14]  M. Wells-Bennik,et al.  Two complementary approaches to quantify variability in heat resistance of spores of Bacillus subtilis. , 2017, International journal of food microbiology.

[15]  Jose A. Egea,et al.  Bioinactivation: Software for modelling dynamic microbial inactivation. , 2017, Food research international.

[16]  M. Ros-Chumillas,et al.  Nanoemulsified D-Limonene Reduces the Heat Resistance of Salmonella Senftenberg over 50 Times , 2017, Nanomaterials.

[17]  B. Carciofi,et al.  Optimal experimental design for improving the estimation of growth parameters of Lactobacillus viridescens from data under non-isothermal conditions. , 2017, International journal of food microbiology.

[18]  I Stamati,et al.  Optimal experimental design for discriminating between microbial growth models as function of suboptimal temperature: From in silico to in vivo. , 2016, Food research international.

[19]  Antonis Papachristodoulou,et al.  Structural Identifiability of Dynamic Systems Biology Models , 2016, PLoS Comput. Biol..

[20]  Ana Arias-Méndez,et al.  Toward predictive food process models: A protocol for parameter estimation , 2016, Critical reviews in food science and nutrition.

[21]  Míriam R. García,et al.  Quality and shelf-life prediction for retail fresh hake (Merluccius merluccius). , 2015, International journal of food microbiology.

[22]  M. Ros-Chumillas,et al.  Determination of Thermal Inactivation Kinetics by the Multipoint Method in a Pilot Plant Tubular Heat Exchanger , 2015, Food and Bioprocess Technology.

[23]  B. Hitzmann,et al.  Optimal experimental design for parameter estimation of the Peleg model , 2015 .

[24]  B. Marks,et al.  Use of simulation tools to illustrate the effect of data management practices for low and negative plate counts on the estimated parameters of microbial reduction models. , 2014, Journal of food protection.

[25]  David Henriques,et al.  MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics , 2013, BMC Bioinformatics.

[26]  G. Aragão,et al.  ESTIMATION OF THE THERMOCHEMICAL NONISOTHERMAL INACTIVATION BEHAVIOR OF BACILLUS COAGULANS SPORES IN NUTRIENT BROTH WITH OREGANO ESSENTIAL OIL , 2013 .

[27]  Kirk D. Dolan,et al.  Parameter estimation in food science. , 2013, Annual review of food science and technology.

[28]  Kirk D. Dolan,et al.  Parameter estimation for dynamic microbial inactivation: which model, which precision? , 2013 .

[29]  Roger M. Cooke,et al.  Prioritizing Emerging Zoonoses in The Netherlands , 2010, PloS one.

[30]  Julio R. Banga,et al.  An evolutionary method for complex-process optimization , 2010, Comput. Oper. Res..

[31]  Basil Jarvis,et al.  Statistical Aspects of the Microbiological Examination of Foods , 2008 .

[32]  Eva Balsa-Canto,et al.  COMPUTING OPTIMAL DYNAMIC EXPERIMENTS FOR MODEL CALIBRATION IN PREDICTIVE MICROBIOLOGY , 2008 .

[33]  Eva Balsa-Canto,et al.  Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation , 2007 .

[34]  Marcel H Zwietering,et al.  A systematic approach to determine global thermal inactivation parameters for various food pathogens. , 2006, International journal of food microbiology.

[35]  M. Hendrickx,et al.  Assessing the optimal experiment setup for first order kinetic studies by Monte Carlo analysis , 2005 .

[36]  Sandro Macchietto,et al.  Designing robust optimal dynamic experiments , 2002 .

[37]  Kimberly M Thompson,et al.  Variability and Uncertainty Meet Risk Management and Risk Communication , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[38]  I. Leguerinel,et al.  On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. , 2001, International journal of food microbiology.

[39]  V. Scott,et al.  Heat resistance of Listeria monocytogenes. , 2001, Journal of food protection.

[40]  M. E. Doyle,et al.  Review of studies on the thermal resistance of Salmonellae. , 2000, Journal of food protection.

[41]  Pablo S. Fernández,et al.  Application of nonlinear regression analysis to the estimation of kinetic parameters for two enterotoxigenic strains ofBacillus cereus spores , 1999 .

[42]  J. Rose,et al.  Quantitative Microbial Risk Assessment , 1999 .

[43]  Jorge C. Oliveira,et al.  Application of D-optimal design for determination of the influence of water content on the thermal degradation kinetics of ascorbic acid at low water contents , 1998 .

[44]  M Peleg,et al.  Reinterpretation of microbial survival curves. , 1998, Critical reviews in food science and nutrition.

[45]  Jorge C. Oliveira,et al.  Optimal experimental design for estimating the kinetic parameters of the Bigelow model , 1997 .

[46]  M. S. Khots,et al.  D-optimal designs , 1995 .

[47]  Ryuei Nishii,et al.  Optimality of experimental designs , 1993, Discret. Math..

[48]  W. D. Bigelow,et al.  The logarithmic nature of thermal death time curves , 1921 .

[49]  G. Aragão,et al.  Optimal experimental design to model spoilage bacteria growth in vacuum-packaged ham , 2018 .

[50]  T. Ross,et al.  Predictive Microbiology: past, present and future , 2007 .

[51]  J. S. Hunter,et al.  Statistics for Experimenters: Design, Innovation, and Discovery , 2006 .

[52]  Ashim K. Datta,et al.  Error estimates for approximate kinetic parameters used in food literature , 1993 .