Message-passing algorithms for compressed sensing

Compressed sensing aims to undersample certain high-dimensional signals yet accurately reconstruct them by exploiting signal characteristics. Accurate reconstruction is possible when the object to be recovered is sufficiently sparse in a known basis. Currently, the best known sparsity–undersampling tradeoff is achieved when reconstructing by convex optimization, which is expensive in important large-scale applications. Fast iterative thresholding algorithms have been intensively studied as alternatives to convex optimization for large-scale problems. Unfortunately known fast algorithms offer substantially worse sparsity–undersampling tradeoffs than convex optimization. We introduce a simple costless modification to iterative thresholding making the sparsity–undersampling tradeoff of the new algorithms equivalent to that of the corresponding convex optimization procedures. The new iterative-thresholding algorithms are inspired by belief propagation in graphical models. Our empirical measurements of the sparsity–undersampling tradeoff for the new algorithms agree with theoretical calculations. We show that a state evolution formalism correctly derives the true sparsity–undersampling tradeoff. There is a surprising agreement between earlier calculations based on random convex polytopes and this apparently very different theoretical formalism.

[1]  Edmund Taylor Whittaker XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory , 1915 .

[2]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.

[3]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[4]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[5]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[6]  R. Palmer,et al.  Solution of 'Solvable model of a spin glass' , 1977 .

[7]  J. Kuelbs Probability on Banach spaces , 1978 .

[8]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[9]  P. Bickel MINIMAX ESTIMATION OF THE MEAN OF A NORMAL DISTRIBUTION SUBJECT TO DOING WELL AT A POINT , 1983 .

[10]  Y. Nesterov A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .

[11]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[14]  Judea Pearl,et al.  Chapter 2 – BAYESIAN INFERENCE , 1988 .

[15]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[16]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[17]  I. Johnstone,et al.  Maximum Entropy and the Nearly Black Object , 1992 .

[18]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[19]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[20]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[21]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[22]  I. Johnstone,et al.  Minimax risk overlp-balls forlp-error , 1994 .

[23]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[24]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[25]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[26]  Gregory Piatetsky-Shapiro,et al.  High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality , 2000 .

[27]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[28]  P. Tseng,et al.  Block Coordinate Relaxation Methods for Nonparametric Wavelet Denoising , 2000 .

[29]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[30]  D. Donoho,et al.  Maximal Sparsity Representation via l 1 Minimization , 2002 .

[31]  M. Talagrand On the High Temperature Phase of the Sherrington-Kirkpatrick Model , 2002 .

[32]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[33]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[34]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[35]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[36]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[37]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[38]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[39]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[40]  D. Donoho,et al.  Neighborliness of randomly projected simplices in high dimensions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[42]  D. Donoho,et al.  Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.

[43]  Michael Elad,et al.  Image Denoising with Shrinkage and Redundant Representations , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[44]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[45]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[46]  R. Fergus,et al.  Random Lens Imaging , 2006 .

[47]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[48]  Richard Baraniuk,et al.  Compressed Sensing Reconstruction via Belief Propagation , 2006 .

[49]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[50]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[51]  David L. Donoho,et al.  High-Dimensional Centrally Symmetric Polytopes with Neighborliness Proportional to Dimension , 2006, Discret. Comput. Geom..

[52]  Joel A. Tropp,et al.  Sparse Approximation Via Iterative Thresholding , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[53]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[54]  E. Candès,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[55]  Robert D. Nowak,et al.  Majorization–Minimization Algorithms for Wavelet-Based Image Restoration , 2007, IEEE Transactions on Image Processing.

[56]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[57]  R. Vershynin,et al.  One sketch for all: fast algorithms for compressed sensing , 2007, STOC '07.

[58]  Mohamed-Jalal Fadili,et al.  Morphological Component Analysis: An Adaptive Thresholding Strategy , 2007, IEEE Transactions on Image Processing.

[59]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[60]  Michael Elad,et al.  A wide-angle view at iterated shrinkage algorithms , 2007, SPIE Optical Engineering + Applications.

[61]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[62]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[63]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[64]  Pierre Vandergheynst,et al.  Average Performance Analysis for Thresholding , 2007, IEEE Signal Processing Letters.

[65]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[66]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[67]  K. Bredies,et al.  Linear Convergence of Iterative Soft-Thresholding , 2007, 0709.1598.

[68]  Jean-Luc Starck,et al.  Compressed Sensing in Astronomy , 2008, IEEE Journal of Selected Topics in Signal Processing.

[69]  M. Bayati,et al.  Max-Product for Maximum Weight Matching: Convergence, Correctness, and LP Duality , 2008, IEEE Transactions on Information Theory.

[70]  P. Indyk,et al.  Near-Optimal Sparse Recovery in the L1 Norm , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[71]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[72]  Martin Vetterli,et al.  Compressive Sampling [From the Guest Editors] , 2008, IEEE Signal Processing Magazine.

[73]  Andrea Montanari,et al.  Counter braids: a novel counter architecture for per-flow measurement , 2008, SIGMETRICS '08.

[74]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[75]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[76]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[77]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[78]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[79]  M. Fornasier,et al.  Iterative thresholding algorithms , 2008 .

[80]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[81]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[82]  A. Robert Calderbank,et al.  Efficient and Robust Compressed Sensing using High-Quality Expander Graphs , 2008, ArXiv.

[83]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[84]  F. Herrmann,et al.  Optimized Compressed Sensing for Curvelet-based Seismic Data Reconstruction , 2009 .

[85]  Fan Zhang,et al.  On the Iterative Decoding of High-Rate LDPC Codes With Applications in Compressed Sensing , 2009, ArXiv.

[86]  David L. Donoho,et al.  Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[87]  Mike E. Davies,et al.  HOW TO USE THE ITERATIVE HARD THRESHOLDING ALGORITHM , 2009 .

[88]  D. Donoho,et al.  Freely Available, Optimally Tuned Iterative Thresholding Algorithms for Compressed Sensing , 2009 .

[89]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[90]  Yoshiyuki Kabashima,et al.  Erratum: A typical reconstruction limit of compressed sensing based on Lp-norm minimization , 2009, ArXiv.

[91]  Weiyu Xu,et al.  On sharp performance bounds for robust sparse signal recoveries , 2009, 2009 IEEE International Symposium on Information Theory.

[92]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[93]  Andrea Montanari,et al.  Supporting Information to: Message Passing Algorithms for Compressed Sensing , 2009 .

[94]  Dongning Guo,et al.  A single-letter characterization of optimal noisy compressed sensing , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[95]  Arian Maleki,et al.  Coherence analysis of iterative thresholding algorithms , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[96]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[97]  Richard G. Baraniuk,et al.  Bayesian Compressive Sensing Via Belief Propagation , 2008, IEEE Transactions on Signal Processing.

[98]  Michael B. Wakin,et al.  Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property , 2009, IEEE Transactions on Information Theory.

[99]  Andrea Montanari,et al.  Analysis of approximate message passing algorithm , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[100]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[101]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[102]  David L. Donoho,et al.  Counting the Faces of Randomly-Projected Hypercubes and Orthants, with Applications , 2008, Discret. Comput. Geom..

[103]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, ISIT.

[104]  Deanna Needell,et al.  Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit , 2007, IEEE Journal of Selected Topics in Signal Processing.

[105]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[106]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[107]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..