Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles–graphene nanocomposites

[1]  A. Manivannan,et al.  A reduced graphene oxide/Co3O4 composite for supercapacitor electrode , 2013 .

[2]  Yueming Li,et al.  Facile treatment of wastewater produced in Hummer's method to prepare Mn3O4 nanoparticles and study their electrochemical performance in an asymmetric supercapacitor , 2013 .

[3]  Jiangtian Li,et al.  Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. , 2013, Nanoscale.

[4]  Dianzeng Jia,et al.  Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances , 2012 .

[5]  Fei Xiao,et al.  Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. , 2012, ACS applied materials & interfaces.

[6]  Chi-Chang Hu,et al.  Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors , 2012 .

[7]  Nianqiang Wu,et al.  Fingerprinting photoluminescence of functional groups in graphene oxide , 2012 .

[8]  Aiqin Zhang,et al.  3D Hierarchical Co3O4 Twin‐Spheres with an Urchin‐Like Structure: Large‐Scale Synthesis, Multistep‐Splitting Growth, and Electrochemical Pseudocapacitors , 2012 .

[9]  Qiang Zhang,et al.  Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density , 2012 .

[10]  R. Selvan,et al.  Electrochemical properties of microwave-assisted reflux-synthesized Mn3O4 nanoparticles in different electrolytes for supercapacitor applications , 2012, Journal of Applied Electrochemistry.

[11]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[12]  T. Mallouk,et al.  A Facile and Template-Free Hydrothermal Synthesis of Mn3O4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability , 2012 .

[13]  Qihua Wang,et al.  Facile Synthesis of Porous Mn3O4 Nano­crystal–Graphene Nanocomposites for Electrochemical Supercapacitors , 2012 .

[14]  Chunzhong Li,et al.  A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. , 2012, Nanoscale.

[15]  Tami Lasseter Clare,et al.  Surfactant-Free Hybridization of Transition Metal Oxide Nanoparticles With Conductive Graphene for High-Performance Supercapacitor , 2012 .

[16]  Hongliang Li,et al.  A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes , 2011 .

[17]  Y. Meng,et al.  Porous manganese oxide generated from lithiation/delithiation with improved electrochemical oxidation for supercapacitors , 2011 .

[18]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[19]  Philippe Poizot,et al.  Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices , 2011 .

[20]  Hao Jiang,et al.  High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires , 2011 .

[21]  H. Dai,et al.  Advanced asymmetrical supercapacitors based on graphene hybrid materials , 2011, 1104.3379.

[22]  Xin Zhao,et al.  The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. , 2011, Nanoscale.

[23]  S. Hur,et al.  Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone , 2011 .

[24]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[25]  Bei Wang,et al.  Mn3O4 nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors , 2010 .

[26]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[27]  M. Yoshio,et al.  Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors , 2010 .

[28]  François Béguin,et al.  A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte , 2010 .

[29]  R. Holze,et al.  A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O , 2010 .

[30]  Cunjiang Yu,et al.  Stretchable Supercapacitors Based on Buckled Single‐Walled Carbon‐Nanotube Macrofilms , 2009, Advanced materials.

[31]  R. Holze,et al.  A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2 , 2009 .

[32]  R. Holze,et al.  V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution , 2009 .

[33]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[34]  Inhwa Jung,et al.  Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. , 2009, Nano letters.

[35]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[36]  Yongsheng Chen,et al.  High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide , 2008 .

[37]  Jingwei Sun,et al.  Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution , 2008 .

[38]  Pierre-Louis Taberna,et al.  Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor , 2007 .

[39]  Anbao Yuan,et al.  A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte , 2006 .

[40]  F. Béguin,et al.  High-voltage asymmetric supercapacitors operating in aqueous electrolyte , 2006 .

[41]  D. Bélanger,et al.  Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors , 2006 .

[42]  François Béguin,et al.  Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium , 2006 .

[43]  Seok-Hyun Lee,et al.  Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor , 2002 .

[44]  Chi-Chang Hu,et al.  Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition , 2002 .

[45]  R. Dell Batteries: fifty years of materials development , 2000 .

[46]  X. Zhao,et al.  Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes , 2012 .