Uniform interpolation and compact congruences

Uniform interpolation properties are defined for equational consequence in a variety of algebras and related to properties of compact congruences on first the free and then the finitely presented algebras of the variety. It is also shown, following related results of Ghilardi and Zawadowski, that a combination of these properties provides a sufficient condition for the first-order theory of the variety to admit a model completion.

[1]  L. Maksimova Craig's theorem in superintuitionistic logics and amalgamable varieties of pseudo-boolean algebras , 1977 .

[2]  W. Blok,et al.  On the structure of varieties with equationally definable principal congruences IV , 1994 .

[3]  P. Bacsich Amalgamation properties and interpolation theorems for equational theories , 1975 .

[5]  Don Pigozzi,et al.  Amalgamation, congruence-extension, and interpolation properties in algebras , 1971 .

[6]  Todd Feil,et al.  Lattice-ordered groups , 1988 .

[7]  P. Köhler,et al.  On the structure of varieties with equationally definable principal congruences II , 1984 .

[8]  Silvio Ghilardi,et al.  Sheaves, games, and model completions - a categorical approach to nonclassical propositional logics , 2011, Trends in logic.

[9]  D. Robinson A Course in the Theory of Groups , 1982 .

[10]  Marta Sagastume,et al.  Strong amalgamation, Beck-Chevalley for equivalence relations and interpolation in algebraic logic , 2003, Fuzzy Sets Syst..

[11]  P. Köhler,et al.  Varieties with equationally definable principal congruences , 1980 .

[12]  Andrew M. Pitts,et al.  Amalgamation and interpolation in the category of heyting algebras , 1983 .

[13]  B. Jónsson EXTENSIONS OF RELATIONAL STRUCTURES , 2014 .

[14]  Enrico Marchioni,et al.  Craig interpolation for semilinear substructural logics , 2012, Math. Log. Q..

[15]  J. Czelakowski,et al.  Amalgamation and Interpolation in Abstract Algebraic Logic , 2003 .

[16]  George Gratzer,et al.  Universal Algebra , 1979 .

[17]  Daniele Mundici Consequence and Interpolation in Łukasiewicz Logic , 2011, Stud Logica.

[18]  H. Ono Interpolation and the Robinson property for logics not closed under the Boolean operations , 1986 .

[19]  Enrico Marchioni Amalgamation through quantifier elimination for varieties of commutative residuated lattices , 2012, Arch. Math. Log..

[20]  C. Tsinakis,et al.  AMALGAMATION AND INTERPOLATION IN ORDERED ALGEBRAS , 2014 .

[21]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[22]  J. Czelakowski,et al.  FREGEAN LOGICS AND THE STRONG AMALGAMATION PROPERTY , 2007 .

[23]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[24]  Silvio Ghilardi,et al.  Model Completions, r-Heyting Categories , 1997, Ann. Pure Appl. Log..

[25]  Desmond Fearnley-Sander,et al.  Universal Algebra , 1982 .

[26]  Andrew M. Pitts,et al.  On an interpretation of second order quantification in first order intuitionistic propositional logic , 1992, Journal of Symbolic Logic.

[27]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[28]  Janusz Czelakowski,et al.  Sentential logics and Maehara Interpolation Property , 1985, Stud Logica.

[29]  Todd Feil,et al.  Lattice-Ordered Groups: An Introduction , 2011 .

[30]  Ralph McKenzie Para primal varieties: A study of finite axiomatizability and definable principal congruences in locally finite varieties , 1978 .

[31]  H. Priestley,et al.  Distributive Lattices , 2004 .

[32]  R. P. Dilworth,et al.  Algebraic theory of lattices , 1973 .

[33]  A. Wronski On a Form of Equational Interpolation Property , 1985 .

[34]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[35]  José Sanmartín Esplugues Introduction to model theory and to the metamathematics of algebra , 1971 .