Hamburger Beiträge zur Angewandten Mathematik The semi-smooth Newton method for variationally discretized control constrained elliptic optimal control problems ; implementation , convergence and globalization
暂无分享,去创建一个
[1] Almerico Murli,et al. Numerical Mathematics and Advanced Applications , 2003 .
[2] K. Kunisch,et al. Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .
[3] Jean-Paul Zolesio,et al. Moving Shape Analysis and Control: Applications to Fluid Structure Interactions , 2006 .
[4] Michael Ulbrich,et al. A mesh-independence result for semismooth Newton methods , 2004, Math. Program..
[5] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[6] Anton Schiela,et al. The Control Reduced Interior Point Method. A Function Space Oriented Algorithmic Approach , 2006 .
[7] K. Krumbiegel,et al. A new stopping criterion for iterative solvers for control optimal problems , 2008 .
[8] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .
[9] J. Puel,et al. Optimal control in some variational inequalities , 1984 .
[10] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[11] Stefan Volkwein,et al. POD a-posteriori error estimates for linear-quadratic optimal control problems , 2009, Comput. Optim. Appl..
[12] Carsten Gräser. Globalization of Nonsmooth Newton Methods for Optimal Control Problems , 2008 .
[13] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[14] Charles M. Elliott,et al. Finite elements on evolving surfaces , 2007 .
[15] Rolf Rannacher,et al. Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .
[16] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[17] Michael Ulbrich,et al. Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..
[18] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[19] Michael Ulbrich,et al. Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.
[20] Ralf Kornhuber,et al. Nonsmooth Newton Methods for Set-Valued Saddle Point Problems , 2009, SIAM J. Numer. Anal..
[21] Michael Hinze,et al. A note on variational discretization of elliptic Neumann boundary control , 2009 .
[22] Arnd Rösch,et al. Superconvergence Properties of Optimal Control Problems , 2004, SIAM J. Control. Optim..