Hamburger Beiträge zur Angewandten Mathematik The semi-smooth Newton method for variationally discretized control constrained elliptic optimal control problems ; implementation , convergence and globalization

Combining the numerical concept of variational discretization and semi-smooth Newton methods for the numerical solution of pde-constrained optimization with control constraints, we place special emphasis on the implementation and globalization of the numerical algorithm. We prove fast local convergence of a globalized algorithm and illustrate our analytical and algorithmical findings by numerical experiments.

[1]  Almerico Murli,et al.  Numerical Mathematics and Advanced Applications , 2003 .

[2]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[3]  Jean-Paul Zolesio,et al.  Moving Shape Analysis and Control: Applications to Fluid Structure Interactions , 2006 .

[4]  Michael Ulbrich,et al.  A mesh-independence result for semismooth Newton methods , 2004, Math. Program..

[5]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[6]  Anton Schiela,et al.  The Control Reduced Interior Point Method. A Function Space Oriented Algorithmic Approach , 2006 .

[7]  K. Krumbiegel,et al.  A new stopping criterion for iterative solvers for control optimal problems , 2008 .

[8]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[9]  J. Puel,et al.  Optimal control in some variational inequalities , 1984 .

[10]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[11]  Stefan Volkwein,et al.  POD a-posteriori error estimates for linear-quadratic optimal control problems , 2009, Comput. Optim. Appl..

[12]  Carsten Gräser Globalization of Nonsmooth Newton Methods for Optimal Control Problems , 2008 .

[13]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[14]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[15]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[16]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[17]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[18]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[19]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[20]  Ralf Kornhuber,et al.  Nonsmooth Newton Methods for Set-Valued Saddle Point Problems , 2009, SIAM J. Numer. Anal..

[21]  Michael Hinze,et al.  A note on variational discretization of elliptic Neumann boundary control , 2009 .

[22]  Arnd Rösch,et al.  Superconvergence Properties of Optimal Control Problems , 2004, SIAM J. Control. Optim..