Independent design of multi-loop PI/PID controllers for interacting multivariable processes

The interactions between input/output variables are a common phenomenon and the main obstacle encountered in the design of multi-loop controllers for interacting multivariable processes. In this study, a novel method for the independent design of multi-loop PI/PID controllers is proposed. The idea of an effective open-loop transfer function (EOTF) is first introduced to decompose a multi-loop control system into a set of equivalent independent single loops. Using a model reduction technique, the EOTF is further approximated to the reduced-order form. Based on the corresponding EOTF model, the individual controller of each single loop is then independently designed by applying the internal model control (IMC)-based PID tuning approach for single-input/single-output (SISO) systems, while the main effects of the dynamic interactions are properly taken into account. Several illustrative examples are employed to demonstrate the effectiveness of the proposed method.

[1]  P. J. Campo,et al.  Achievable closed-loop properties of systems under decentralized control: conditions involving the steady-state gain , 1994, IEEE Trans. Autom. Control..

[2]  William S. Levine,et al.  Control System Fundamentals , 1999 .

[3]  Manfred Morari,et al.  Robust Performance of Decentralized Control Systems by Independent Designs , 1987, 1987 American Control Conference.

[4]  Zhong-Xiang Zhu† Structural Analysis and Stability Conditions of Decentralized Control Systems , 1996 .

[5]  R. K. Wood,et al.  Terminal composition control of a binary distillation column , 1973 .

[6]  Shih‐Haur Shen,et al.  Use of relay‐feedback test for automatic tuning of multivariable systems , 1994 .

[7]  Brett Ninness,et al.  Integral constraints on the accuracy of least-squares estimation , 1996, Autom..

[8]  W. Cai,et al.  A practical loop pairing criterion for multivariable processes , 2005 .

[9]  Weng Khuen Ho,et al.  Tuning of Multiloop Proportional−Integral−Derivative Controllers Based on Gain and Phase Margin Specifications , 1997 .

[10]  Thomas F. Edgar,et al.  Static decouplers for control of multivariable processes , 2005 .

[11]  J. Ragot,et al.  Dynamic SISO and MISO system approximations based on optimal Laguerre models , 1998, IEEE Trans. Autom. Control..

[12]  Weng Khuen Ho,et al.  Tuning of PID controllers based on gain and phase margin specifications , 1995, Autom..

[13]  Moonyong Lee,et al.  Analytical Design of Multiloop PID Controllers for Desired Closed-Loop Responses (R&D Note) , 2004 .

[14]  Sigurd Skogestad,et al.  Simple analytic rules for model reduction and PID controller tuning , 2003 .

[15]  Elling W. Jacobsen,et al.  Performance limitations in decentralized control , 2000 .

[16]  Babatunde A. Ogunnaike,et al.  Advanced multivariable control of a pilot‐plant distillation column , 1983 .

[17]  Feng-Sheng Wang,et al.  OPTIMAL TUNING OF PID CONTROLLERS FOR SINGLE AND CASCADE CONTROL LOOPS , 1995 .

[18]  David Q. Mayne The design of linear multivariable systems , 1973 .

[19]  J. Schoukens,et al.  Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..

[20]  Su Whan Sung,et al.  On-Line Process Identification Using the Laguerre Series for Automatic Tuning of the Proportional-Integral-Derivative Controller , 1997 .

[21]  P. Gawthrop,et al.  Identification of time delays using a polynomial identification method , 1985 .

[22]  Moonyong Lee,et al.  Design of advanced PID controller for enhanced disturbance rejection of second-order processes with time delay , 2008 .

[23]  Wenjian Cai,et al.  Effective transfer function method for decentralized control system design of multi-input multi-output processes , 2006 .

[24]  Y. Halevi,et al.  Automatic tuning of decentralized PID controllers for TITO processes , 1993, at - Automatisierungstechnik.

[25]  Tore Hägglund,et al.  Automatic Tuning of Pid Controllers , 1988 .

[26]  William L. Luyben,et al.  Process Modeling, Simulation and Control for Chemical Engineers , 1973 .

[27]  Wonhui Cho,et al.  Multiloop PI controller tuning for interacting multivariable processes , 1998 .

[28]  G. Dumont,et al.  Deterministic adaptive control based on Laguerre series representation , 1988 .

[29]  Wenjian Cai,et al.  Simple Decentralized PID Controller Design Method Based on Dynamic Relative Interaction Analysis , 2005 .

[30]  E. Bristol On a new measure of interaction for multivariable process control , 1966 .

[31]  Sigurd Skogestad,et al.  Sequential design of decentralized controllers , 1994, Autom..

[32]  Rik Pintelon,et al.  Identification of transfer functions with time delay and its application to cable fault location , 1990 .

[33]  Thomas F. Edgar,et al.  Analysis of control‐output interactions in dynamic systems , 1981 .

[34]  Tao Liu,et al.  Analytical Multiloop PI/PID Controller Design for Two-by-Two Processes with Time Delays , 2005 .

[35]  Manfred Morari,et al.  Interaction measures for systems under decentralized control , 1986, Autom..

[36]  William L. Luyben,et al.  Simple method for tuning SISO controllers in multivariable systems , 1986 .

[37]  Chih-Hung Chiang,et al.  A direct method for multi-loop PI/PID controller design , 2003 .

[38]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[39]  Sunwon Park,et al.  PID controller tuning for desired closed‐loop responses for SI/SO systems , 1998 .

[40]  Vladimír Strejc,et al.  Least squares parameter estimation , 1979, Autom..

[41]  Chang-Chieh Hang,et al.  Autotuning of multiloop proportional-integral controllers using relay feedback , 1993 .

[42]  Jietae Lee,et al.  One-Parameter Method for a Multiloop Control System Design , 1999 .

[43]  S. Skogestad,et al.  Improved independent design of robust decentralized controllers , 1993 .

[44]  Lihua Xie,et al.  RNGA based control system configuration for multivariable processes , 2009 .

[45]  Qing-Guo Wang,et al.  Robust closed-loop identification with application to auto-tuning , 2001 .